Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprmidlc Structured version   Visualization version   GIF version

Theorem isprmidlc 33001
Description: The predicate "is prime ideal" for commutative rings. Alternate definition for commutative rings. See definition in [Lang] p. 92. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
isprmidlc.1 𝐡 = (Baseβ€˜π‘…)
isprmidlc.2 Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
isprmidlc (𝑅 ∈ CRing β†’ (𝑃 ∈ (PrmIdealβ€˜π‘…) ↔ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))))
Distinct variable groups:   π‘₯,𝐡,𝑦   π‘₯,𝑃,𝑦   π‘₯,𝑅,𝑦
Allowed substitution hints:   Β· (π‘₯,𝑦)

Proof of Theorem isprmidlc
Dummy variables π‘š 𝑛 π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20139 . . . 4 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
2 prmidlidl 32997 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 ∈ (LIdealβ€˜π‘…))
31, 2sylan 579 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 ∈ (LIdealβ€˜π‘…))
4 isprmidlc.1 . . . . 5 𝐡 = (Baseβ€˜π‘…)
5 isprmidlc.2 . . . . 5 Β· = (.rβ€˜π‘…)
64, 5prmidlnr 32992 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 β‰  𝐡)
71, 6sylan 579 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 β‰  𝐡)
81ad4antr 729 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ 𝑅 ∈ Ring)
9 simp-4r 781 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ 𝑃 ∈ (PrmIdealβ€˜π‘…))
10 simpllr 773 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ π‘₯ ∈ 𝐡)
1110snssd 4804 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ {π‘₯} βŠ† 𝐡)
12 eqid 2724 . . . . . . . . . . 11 (RSpanβ€˜π‘…) = (RSpanβ€˜π‘…)
13 eqid 2724 . . . . . . . . . . 11 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
1412, 4, 13rspcl 21083 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {π‘₯} βŠ† 𝐡) β†’ ((RSpanβ€˜π‘…)β€˜{π‘₯}) ∈ (LIdealβ€˜π‘…))
158, 11, 14syl2anc 583 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ ((RSpanβ€˜π‘…)β€˜{π‘₯}) ∈ (LIdealβ€˜π‘…))
16 simplr 766 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ 𝑦 ∈ 𝐡)
1716snssd 4804 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ {𝑦} βŠ† 𝐡)
1812, 4, 13rspcl 21083 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑦} βŠ† 𝐡) β†’ ((RSpanβ€˜π‘…)β€˜{𝑦}) ∈ (LIdealβ€˜π‘…))
198, 17, 18syl2anc 583 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ ((RSpanβ€˜π‘…)β€˜{𝑦}) ∈ (LIdealβ€˜π‘…))
2015, 19jca 511 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ (((RSpanβ€˜π‘…)β€˜{π‘₯}) ∈ (LIdealβ€˜π‘…) ∧ ((RSpanβ€˜π‘…)β€˜{𝑦}) ∈ (LIdealβ€˜π‘…)))
21 simpllr 773 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ π‘Ÿ = (π‘š Β· π‘₯))
22 simpr 484 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ 𝑠 = (𝑛 Β· 𝑦))
2321, 22oveq12d 7419 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ (π‘Ÿ Β· 𝑠) = ((π‘š Β· π‘₯) Β· (𝑛 Β· 𝑦)))
24 simp-10l 792 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ 𝑅 ∈ CRing)
25 simp-4r 781 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ π‘š ∈ 𝐡)
2610ad2antrr 723 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) β†’ π‘₯ ∈ 𝐡)
2726ad4antr 729 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ π‘₯ ∈ 𝐡)
28 simplr 766 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ 𝑛 ∈ 𝐡)
2916ad4antr 729 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) β†’ 𝑦 ∈ 𝐡)
3029ad2antrr 723 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ 𝑦 ∈ 𝐡)
314, 5cringm4 33000 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (π‘š ∈ 𝐡 ∧ π‘₯ ∈ 𝐡) ∧ (𝑛 ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((π‘š Β· π‘₯) Β· (𝑛 Β· 𝑦)) = ((π‘š Β· 𝑛) Β· (π‘₯ Β· 𝑦)))
3224, 25, 27, 28, 30, 31syl122anc 1376 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ ((π‘š Β· π‘₯) Β· (𝑛 Β· 𝑦)) = ((π‘š Β· 𝑛) Β· (π‘₯ Β· 𝑦)))
3324, 1syl 17 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ 𝑅 ∈ Ring)
343ad9antr 739 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ 𝑃 ∈ (LIdealβ€˜π‘…))
354, 5ringcl 20144 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ π‘š ∈ 𝐡 ∧ 𝑛 ∈ 𝐡) β†’ (π‘š Β· 𝑛) ∈ 𝐡)
3633, 25, 28, 35syl3anc 1368 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ (π‘š Β· 𝑛) ∈ 𝐡)
37 simp-7r 787 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ (π‘₯ Β· 𝑦) ∈ 𝑃)
3813, 4, 5lidlmcl 21073 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdealβ€˜π‘…)) ∧ ((π‘š Β· 𝑛) ∈ 𝐡 ∧ (π‘₯ Β· 𝑦) ∈ 𝑃)) β†’ ((π‘š Β· 𝑛) Β· (π‘₯ Β· 𝑦)) ∈ 𝑃)
3933, 34, 36, 37, 38syl22anc 836 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ ((π‘š Β· 𝑛) Β· (π‘₯ Β· 𝑦)) ∈ 𝑃)
4032, 39eqeltrd 2825 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ ((π‘š Β· π‘₯) Β· (𝑛 Β· 𝑦)) ∈ 𝑃)
4123, 40eqeltrd 2825 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) ∧ 𝑛 ∈ 𝐡) ∧ 𝑠 = (𝑛 Β· 𝑦)) β†’ (π‘Ÿ Β· 𝑠) ∈ 𝑃)
428ad2antrr 723 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) β†’ 𝑅 ∈ Ring)
4342ad2antrr 723 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) β†’ 𝑅 ∈ Ring)
44 simpllr 773 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) β†’ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦}))
454, 5, 12rspsnel 32919 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐡) β†’ (𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦}) ↔ βˆƒπ‘› ∈ 𝐡 𝑠 = (𝑛 Β· 𝑦)))
4645biimpa 476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐡) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) β†’ βˆƒπ‘› ∈ 𝐡 𝑠 = (𝑛 Β· 𝑦))
4743, 29, 44, 46syl21anc 835 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) β†’ βˆƒπ‘› ∈ 𝐡 𝑠 = (𝑛 Β· 𝑦))
4841, 47r19.29a 3154 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) ∧ π‘š ∈ 𝐡) ∧ π‘Ÿ = (π‘š Β· π‘₯)) β†’ (π‘Ÿ Β· 𝑠) ∈ 𝑃)
49 simplr 766 . . . . . . . . . . . 12 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) β†’ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯}))
504, 5, 12rspsnel 32919 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ π‘₯ ∈ 𝐡) β†’ (π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯}) ↔ βˆƒπ‘š ∈ 𝐡 π‘Ÿ = (π‘š Β· π‘₯)))
5150biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ π‘₯ ∈ 𝐡) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) β†’ βˆƒπ‘š ∈ 𝐡 π‘Ÿ = (π‘š Β· π‘₯))
5242, 26, 49, 51syl21anc 835 . . . . . . . . . . 11 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) β†’ βˆƒπ‘š ∈ 𝐡 π‘Ÿ = (π‘š Β· π‘₯))
5348, 52r19.29a 3154 . . . . . . . . . 10 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})) β†’ (π‘Ÿ Β· 𝑠) ∈ 𝑃)
5453anasss 466 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) ∧ (π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯}) ∧ 𝑠 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦}))) β†’ (π‘Ÿ Β· 𝑠) ∈ 𝑃)
5554ralrimivva 3192 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ βˆ€π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})βˆ€π‘  ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})(π‘Ÿ Β· 𝑠) ∈ 𝑃)
564, 5prmidl 32993 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ (((RSpanβ€˜π‘…)β€˜{π‘₯}) ∈ (LIdealβ€˜π‘…) ∧ ((RSpanβ€˜π‘…)β€˜{𝑦}) ∈ (LIdealβ€˜π‘…))) ∧ βˆ€π‘Ÿ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯})βˆ€π‘  ∈ ((RSpanβ€˜π‘…)β€˜{𝑦})(π‘Ÿ Β· 𝑠) ∈ 𝑃) β†’ (((RSpanβ€˜π‘…)β€˜{π‘₯}) βŠ† 𝑃 ∨ ((RSpanβ€˜π‘…)β€˜{𝑦}) βŠ† 𝑃))
578, 9, 20, 55, 56syl1111anc 837 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ (((RSpanβ€˜π‘…)β€˜{π‘₯}) βŠ† 𝑃 ∨ ((RSpanβ€˜π‘…)β€˜{𝑦}) βŠ† 𝑃))
584, 12rspsnid 32920 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯}))
591, 58sylan 579 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯}))
6059adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ π‘₯ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯}))
61 ssel 3967 . . . . . . . . . . 11 (((RSpanβ€˜π‘…)β€˜{π‘₯}) βŠ† 𝑃 β†’ (π‘₯ ∈ ((RSpanβ€˜π‘…)β€˜{π‘₯}) β†’ π‘₯ ∈ 𝑃))
6260, 61syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ (((RSpanβ€˜π‘…)β€˜{π‘₯}) βŠ† 𝑃 β†’ π‘₯ ∈ 𝑃))
634, 12rspsnid 32920 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦}))
641, 63sylan 579 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦}))
6564adantlr 712 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦}))
66 ssel 3967 . . . . . . . . . . 11 (((RSpanβ€˜π‘…)β€˜{𝑦}) βŠ† 𝑃 β†’ (𝑦 ∈ ((RSpanβ€˜π‘…)β€˜{𝑦}) β†’ 𝑦 ∈ 𝑃))
6765, 66syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ (((RSpanβ€˜π‘…)β€˜{𝑦}) βŠ† 𝑃 β†’ 𝑦 ∈ 𝑃))
6862, 67orim12d 961 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ ((((RSpanβ€˜π‘…)β€˜{π‘₯}) βŠ† 𝑃 ∨ ((RSpanβ€˜π‘…)β€˜{𝑦}) βŠ† 𝑃) β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))
6968adantllr 716 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ ((((RSpanβ€˜π‘…)β€˜{π‘₯}) βŠ† 𝑃 ∨ ((RSpanβ€˜π‘…)β€˜{𝑦}) βŠ† 𝑃) β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))
7069adantr 480 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ ((((RSpanβ€˜π‘…)β€˜{π‘₯}) βŠ† 𝑃 ∨ ((RSpanβ€˜π‘…)β€˜{𝑦}) βŠ† 𝑃) β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))
7157, 70mpd 15 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) ∧ (π‘₯ Β· 𝑦) ∈ 𝑃) β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))
7271ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))
7372anasss 466 . . . 4 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))
7473ralrimivva 3192 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))
753, 7, 743jca 1125 . 2 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))))
76 3anass 1092 . . . 4 ((𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ↔ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ (𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))))
774, 5prmidl2 32994 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdealβ€˜π‘…)) ∧ (𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) β†’ 𝑃 ∈ (PrmIdealβ€˜π‘…))
7877anasss 466 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ (𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))))) β†’ 𝑃 ∈ (PrmIdealβ€˜π‘…))
7976, 78sylan2b 593 . . 3 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) β†’ 𝑃 ∈ (PrmIdealβ€˜π‘…))
801, 79sylan 579 . 2 ((𝑅 ∈ CRing ∧ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) β†’ 𝑃 ∈ (PrmIdealβ€˜π‘…))
8175, 80impbida 798 1 (𝑅 ∈ CRing β†’ (𝑃 ∈ (PrmIdealβ€˜π‘…) ↔ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘₯ ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062   βŠ† wss 3940  {csn 4620  β€˜cfv 6533  (class class class)co 7401  Basecbs 17142  .rcmulr 17196  Ringcrg 20127  CRingccrg 20128  LIdealclidl 21054  RSpancrsp 21055  PrmIdealcprmidl 32988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-sca 17211  df-vsca 17212  df-ip 17213  df-0g 17385  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19039  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-subrg 20460  df-lmod 20697  df-lss 20768  df-lsp 20808  df-sra 21010  df-rgmod 21011  df-lidl 21056  df-rsp 21057  df-prmidl 32989
This theorem is referenced by:  prmidlc  33002  prmidl0  33004  qsidomlem2  33007
  Copyright terms: Public domain W3C validator