Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprmidlc Structured version   Visualization version   GIF version

Theorem isprmidlc 33454
Description: The predicate "is prime ideal" for commutative rings. Alternate definition for commutative rings. See definition in [Lang] p. 92. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
isprmidlc.1 𝐵 = (Base‘𝑅)
isprmidlc.2 · = (.r𝑅)
Assertion
Ref Expression
isprmidlc (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isprmidlc
Dummy variables 𝑚 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20262 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 prmidlidl 33451 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
31, 2sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
4 isprmidlc.1 . . . . 5 𝐵 = (Base‘𝑅)
5 isprmidlc.2 . . . . 5 · = (.r𝑅)
64, 5prmidlnr 33446 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
71, 6sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
81ad4antr 732 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑅 ∈ Ring)
9 simp-4r 784 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑃 ∈ (PrmIdeal‘𝑅))
10 simpllr 776 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑥𝐵)
1110snssd 4813 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑥} ⊆ 𝐵)
12 eqid 2734 . . . . . . . . . . 11 (RSpan‘𝑅) = (RSpan‘𝑅)
13 eqid 2734 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1412, 4, 13rspcl 21262 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
158, 11, 14syl2anc 584 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
16 simplr 769 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑦𝐵)
1716snssd 4813 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑦} ⊆ 𝐵)
1812, 4, 13rspcl 21262 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
198, 17, 18syl2anc 584 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
2015, 19jca 511 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅)))
21 simpllr 776 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑟 = (𝑚 · 𝑥))
22 simpr 484 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑠 = (𝑛 · 𝑦))
2321, 22oveq12d 7448 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) = ((𝑚 · 𝑥) · (𝑛 · 𝑦)))
24 simp-10l 795 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ CRing)
25 simp-4r 784 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑚𝐵)
2610ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑥𝐵)
2726ad4antr 732 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑥𝐵)
28 simplr 769 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑛𝐵)
2916ad4antr 732 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑦𝐵)
3029ad2antrr 726 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑦𝐵)
314, 5cringm4 33453 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑚𝐵𝑥𝐵) ∧ (𝑛𝐵𝑦𝐵)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3224, 25, 27, 28, 30, 31syl122anc 1378 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3324, 1syl 17 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ Ring)
343ad9antr 742 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑃 ∈ (LIdeal‘𝑅))
354, 5ringcl 20267 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑚𝐵𝑛𝐵) → (𝑚 · 𝑛) ∈ 𝐵)
3633, 25, 28, 35syl3anc 1370 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑚 · 𝑛) ∈ 𝐵)
37 simp-7r 790 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑥 · 𝑦) ∈ 𝑃)
3813, 4, 5lidlmcl 21252 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ ((𝑚 · 𝑛) ∈ 𝐵 ∧ (𝑥 · 𝑦) ∈ 𝑃)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
3933, 34, 36, 37, 38syl22anc 839 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
4032, 39eqeltrd 2838 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) ∈ 𝑃)
4123, 40eqeltrd 2838 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) ∈ 𝑃)
428ad2antrr 726 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑅 ∈ Ring)
4342ad2antrr 726 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑅 ∈ Ring)
44 simpllr 776 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))
454, 5, 12elrspsn 21267 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦)))
4645biimpa 476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4743, 29, 44, 46syl21anc 838 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4841, 47r19.29a 3159 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → (𝑟 · 𝑠) ∈ 𝑃)
49 simplr 769 . . . . . . . . . . . 12 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}))
504, 5, 12elrspsn 21267 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥)))
5150biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5242, 26, 49, 51syl21anc 838 . . . . . . . . . . 11 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5348, 52r19.29a 3159 . . . . . . . . . 10 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → (𝑟 · 𝑠) ∈ 𝑃)
5453anasss 466 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))) → (𝑟 · 𝑠) ∈ 𝑃)
5554ralrimivva 3199 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃)
564, 5prmidl 33447 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))) ∧ ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
578, 9, 20, 55, 56syl1111anc 840 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
584, 12rspsnid 33378 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
591, 58sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
6059adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
61 ssel 3988 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}) → 𝑥𝑃))
6260, 61syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃𝑥𝑃))
634, 12rspsnid 33378 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
641, 63sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
6564adantlr 715 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
66 ssel 3988 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃 → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}) → 𝑦𝑃))
6765, 66syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃𝑦𝑃))
6862, 67orim12d 966 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
6968adantllr 719 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7069adantr 480 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7157, 70mpd 15 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (𝑥𝑃𝑦𝑃))
7271ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7372anasss 466 . . . 4 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7473ralrimivva 3199 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
753, 7, 743jca 1127 . 2 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
76 3anass 1094 . . . 4 ((𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
774, 5prmidl2 33448 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7877anasss 466 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7976, 78sylan2b 594 . . 3 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
801, 79sylan 580 . 2 ((𝑅 ∈ CRing ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
8175, 80impbida 801 1 (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  wss 3962  {csn 4630  cfv 6562  (class class class)co 7430  Basecbs 17244  .rcmulr 17298  Ringcrg 20250  CRingccrg 20251  LIdealclidl 21233  RSpancrsp 21234  PrmIdealcprmidl 33442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-prmidl 33443
This theorem is referenced by:  prmidlc  33455  prmidl0  33457  qsidomlem2  33460  ssdifidlprm  33465  rsprprmprmidl  33529
  Copyright terms: Public domain W3C validator