Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprmidlc Structured version   Visualization version   GIF version

Theorem isprmidlc 31525
Description: The predicate "is prime ideal" for commutative rings. Alternate definition for commutative rings. See definition in [Lang] p. 92. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
isprmidlc.1 𝐵 = (Base‘𝑅)
isprmidlc.2 · = (.r𝑅)
Assertion
Ref Expression
isprmidlc (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isprmidlc
Dummy variables 𝑚 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19710 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 prmidlidl 31521 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
31, 2sylan 579 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
4 isprmidlc.1 . . . . 5 𝐵 = (Base‘𝑅)
5 isprmidlc.2 . . . . 5 · = (.r𝑅)
64, 5prmidlnr 31516 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
71, 6sylan 579 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
81ad4antr 728 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑅 ∈ Ring)
9 simp-4r 780 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑃 ∈ (PrmIdeal‘𝑅))
10 simpllr 772 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑥𝐵)
1110snssd 4739 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑥} ⊆ 𝐵)
12 eqid 2738 . . . . . . . . . . 11 (RSpan‘𝑅) = (RSpan‘𝑅)
13 eqid 2738 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1412, 4, 13rspcl 20406 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
158, 11, 14syl2anc 583 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
16 simplr 765 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑦𝐵)
1716snssd 4739 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑦} ⊆ 𝐵)
1812, 4, 13rspcl 20406 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
198, 17, 18syl2anc 583 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
2015, 19jca 511 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅)))
21 simpllr 772 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑟 = (𝑚 · 𝑥))
22 simpr 484 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑠 = (𝑛 · 𝑦))
2321, 22oveq12d 7273 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) = ((𝑚 · 𝑥) · (𝑛 · 𝑦)))
24 simp-10l 791 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ CRing)
25 simp-4r 780 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑚𝐵)
2610ad2antrr 722 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑥𝐵)
2726ad4antr 728 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑥𝐵)
28 simplr 765 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑛𝐵)
2916ad4antr 728 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑦𝐵)
3029ad2antrr 722 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑦𝐵)
314, 5cringm4 31524 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑚𝐵𝑥𝐵) ∧ (𝑛𝐵𝑦𝐵)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3224, 25, 27, 28, 30, 31syl122anc 1377 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3324, 1syl 17 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ Ring)
343ad9antr 738 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑃 ∈ (LIdeal‘𝑅))
354, 5ringcl 19715 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑚𝐵𝑛𝐵) → (𝑚 · 𝑛) ∈ 𝐵)
3633, 25, 28, 35syl3anc 1369 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑚 · 𝑛) ∈ 𝐵)
37 simp-7r 786 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑥 · 𝑦) ∈ 𝑃)
3813, 4, 5lidlmcl 20401 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ ((𝑚 · 𝑛) ∈ 𝐵 ∧ (𝑥 · 𝑦) ∈ 𝑃)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
3933, 34, 36, 37, 38syl22anc 835 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
4032, 39eqeltrd 2839 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) ∈ 𝑃)
4123, 40eqeltrd 2839 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) ∈ 𝑃)
428ad2antrr 722 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑅 ∈ Ring)
4342ad2antrr 722 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑅 ∈ Ring)
44 simpllr 772 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))
454, 5, 12rspsnel 31469 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦)))
4645biimpa 476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4743, 29, 44, 46syl21anc 834 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4841, 47r19.29a 3217 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → (𝑟 · 𝑠) ∈ 𝑃)
49 simplr 765 . . . . . . . . . . . 12 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}))
504, 5, 12rspsnel 31469 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥)))
5150biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5242, 26, 49, 51syl21anc 834 . . . . . . . . . . 11 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5348, 52r19.29a 3217 . . . . . . . . . 10 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → (𝑟 · 𝑠) ∈ 𝑃)
5453anasss 466 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))) → (𝑟 · 𝑠) ∈ 𝑃)
5554ralrimivva 3114 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃)
564, 5prmidl 31517 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))) ∧ ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
578, 9, 20, 55, 56syl1111anc 836 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
584, 12rspsnid 31470 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
591, 58sylan 579 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
6059adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
61 ssel 3910 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}) → 𝑥𝑃))
6260, 61syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃𝑥𝑃))
634, 12rspsnid 31470 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
641, 63sylan 579 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
6564adantlr 711 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
66 ssel 3910 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃 → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}) → 𝑦𝑃))
6765, 66syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃𝑦𝑃))
6862, 67orim12d 961 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
6968adantllr 715 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7069adantr 480 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7157, 70mpd 15 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (𝑥𝑃𝑦𝑃))
7271ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7372anasss 466 . . . 4 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7473ralrimivva 3114 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
753, 7, 743jca 1126 . 2 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
76 3anass 1093 . . . 4 ((𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
774, 5prmidl2 31518 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7877anasss 466 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7976, 78sylan2b 593 . . 3 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
801, 79sylan 579 . 2 ((𝑅 ∈ CRing ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
8175, 80impbida 797 1 (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Ringcrg 19698  CRingccrg 19699  LIdealclidl 20347  RSpancrsp 20348  PrmIdealcprmidl 31512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-prmidl 31513
This theorem is referenced by:  prmidlc  31526  prmidl0  31528  qsidomlem2  31531
  Copyright terms: Public domain W3C validator