Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprmidlc Structured version   Visualization version   GIF version

Theorem isprmidlc 33440
Description: The predicate "is prime ideal" for commutative rings. Alternate definition for commutative rings. See definition in [Lang] p. 92. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
isprmidlc.1 𝐵 = (Base‘𝑅)
isprmidlc.2 · = (.r𝑅)
Assertion
Ref Expression
isprmidlc (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isprmidlc
Dummy variables 𝑚 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20272 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 prmidlidl 33437 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
31, 2sylan 579 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
4 isprmidlc.1 . . . . 5 𝐵 = (Base‘𝑅)
5 isprmidlc.2 . . . . 5 · = (.r𝑅)
64, 5prmidlnr 33432 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
71, 6sylan 579 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
81ad4antr 731 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑅 ∈ Ring)
9 simp-4r 783 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑃 ∈ (PrmIdeal‘𝑅))
10 simpllr 775 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑥𝐵)
1110snssd 4834 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑥} ⊆ 𝐵)
12 eqid 2740 . . . . . . . . . . 11 (RSpan‘𝑅) = (RSpan‘𝑅)
13 eqid 2740 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1412, 4, 13rspcl 21268 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
158, 11, 14syl2anc 583 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
16 simplr 768 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑦𝐵)
1716snssd 4834 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑦} ⊆ 𝐵)
1812, 4, 13rspcl 21268 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
198, 17, 18syl2anc 583 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
2015, 19jca 511 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅)))
21 simpllr 775 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑟 = (𝑚 · 𝑥))
22 simpr 484 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑠 = (𝑛 · 𝑦))
2321, 22oveq12d 7466 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) = ((𝑚 · 𝑥) · (𝑛 · 𝑦)))
24 simp-10l 794 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ CRing)
25 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑚𝐵)
2610ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑥𝐵)
2726ad4antr 731 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑥𝐵)
28 simplr 768 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑛𝐵)
2916ad4antr 731 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑦𝐵)
3029ad2antrr 725 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑦𝐵)
314, 5cringm4 33439 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑚𝐵𝑥𝐵) ∧ (𝑛𝐵𝑦𝐵)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3224, 25, 27, 28, 30, 31syl122anc 1379 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3324, 1syl 17 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ Ring)
343ad9antr 741 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑃 ∈ (LIdeal‘𝑅))
354, 5ringcl 20277 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑚𝐵𝑛𝐵) → (𝑚 · 𝑛) ∈ 𝐵)
3633, 25, 28, 35syl3anc 1371 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑚 · 𝑛) ∈ 𝐵)
37 simp-7r 789 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑥 · 𝑦) ∈ 𝑃)
3813, 4, 5lidlmcl 21258 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ ((𝑚 · 𝑛) ∈ 𝐵 ∧ (𝑥 · 𝑦) ∈ 𝑃)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
3933, 34, 36, 37, 38syl22anc 838 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
4032, 39eqeltrd 2844 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) ∈ 𝑃)
4123, 40eqeltrd 2844 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) ∈ 𝑃)
428ad2antrr 725 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑅 ∈ Ring)
4342ad2antrr 725 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑅 ∈ Ring)
44 simpllr 775 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))
454, 5, 12elrspsn 21273 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦)))
4645biimpa 476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4743, 29, 44, 46syl21anc 837 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4841, 47r19.29a 3168 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → (𝑟 · 𝑠) ∈ 𝑃)
49 simplr 768 . . . . . . . . . . . 12 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}))
504, 5, 12elrspsn 21273 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥)))
5150biimpa 476 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5242, 26, 49, 51syl21anc 837 . . . . . . . . . . 11 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5348, 52r19.29a 3168 . . . . . . . . . 10 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → (𝑟 · 𝑠) ∈ 𝑃)
5453anasss 466 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))) → (𝑟 · 𝑠) ∈ 𝑃)
5554ralrimivva 3208 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃)
564, 5prmidl 33433 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))) ∧ ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
578, 9, 20, 55, 56syl1111anc 839 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
584, 12rspsnid 33364 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
591, 58sylan 579 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
6059adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
61 ssel 4002 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}) → 𝑥𝑃))
6260, 61syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃𝑥𝑃))
634, 12rspsnid 33364 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
641, 63sylan 579 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
6564adantlr 714 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
66 ssel 4002 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃 → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}) → 𝑦𝑃))
6765, 66syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃𝑦𝑃))
6862, 67orim12d 965 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
6968adantllr 718 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7069adantr 480 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7157, 70mpd 15 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (𝑥𝑃𝑦𝑃))
7271ex 412 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7372anasss 466 . . . 4 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7473ralrimivva 3208 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
753, 7, 743jca 1128 . 2 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
76 3anass 1095 . . . 4 ((𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
774, 5prmidl2 33434 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7877anasss 466 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7976, 78sylan2b 593 . . 3 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
801, 79sylan 579 . 2 ((𝑅 ∈ CRing ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
8175, 80impbida 800 1 (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  Ringcrg 20260  CRingccrg 20261  LIdealclidl 21239  RSpancrsp 21240  PrmIdealcprmidl 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-prmidl 33429
This theorem is referenced by:  prmidlc  33441  prmidl0  33443  qsidomlem2  33446  ssdifidlprm  33451  rsprprmprmidl  33515
  Copyright terms: Public domain W3C validator