Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprmidlc Structured version   Visualization version   GIF version

Theorem isprmidlc 32220
Description: The predicate "is prime ideal" for commutative rings. Alternate definition for commutative rings. See definition in [Lang] p. 92. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
isprmidlc.1 𝐵 = (Base‘𝑅)
isprmidlc.2 · = (.r𝑅)
Assertion
Ref Expression
isprmidlc (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isprmidlc
Dummy variables 𝑚 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19976 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 prmidlidl 32216 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
31, 2sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅))
4 isprmidlc.1 . . . . 5 𝐵 = (Base‘𝑅)
5 isprmidlc.2 . . . . 5 · = (.r𝑅)
64, 5prmidlnr 32211 . . . 4 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
71, 6sylan 580 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
81ad4antr 730 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑅 ∈ Ring)
9 simp-4r 782 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑃 ∈ (PrmIdeal‘𝑅))
10 simpllr 774 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑥𝐵)
1110snssd 4769 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑥} ⊆ 𝐵)
12 eqid 2736 . . . . . . . . . . 11 (RSpan‘𝑅) = (RSpan‘𝑅)
13 eqid 2736 . . . . . . . . . . 11 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1412, 4, 13rspcl 20692 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
158, 11, 14syl2anc 584 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅))
16 simplr 767 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑦𝐵)
1716snssd 4769 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑦} ⊆ 𝐵)
1812, 4, 13rspcl 20692 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
198, 17, 18syl2anc 584 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))
2015, 19jca 512 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅)))
21 simpllr 774 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑟 = (𝑚 · 𝑥))
22 simpr 485 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑠 = (𝑛 · 𝑦))
2321, 22oveq12d 7375 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) = ((𝑚 · 𝑥) · (𝑛 · 𝑦)))
24 simp-10l 793 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ CRing)
25 simp-4r 782 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑚𝐵)
2610ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑥𝐵)
2726ad4antr 730 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑥𝐵)
28 simplr 767 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑛𝐵)
2916ad4antr 730 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑦𝐵)
3029ad2antrr 724 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑦𝐵)
314, 5cringm4 32219 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ (𝑚𝐵𝑥𝐵) ∧ (𝑛𝐵𝑦𝐵)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3224, 25, 27, 28, 30, 31syl122anc 1379 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦)))
3324, 1syl 17 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ Ring)
343ad9antr 740 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑃 ∈ (LIdeal‘𝑅))
354, 5ringcl 19981 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑚𝐵𝑛𝐵) → (𝑚 · 𝑛) ∈ 𝐵)
3633, 25, 28, 35syl3anc 1371 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑚 · 𝑛) ∈ 𝐵)
37 simp-7r 788 . . . . . . . . . . . . . . 15 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑥 · 𝑦) ∈ 𝑃)
3813, 4, 5lidlmcl 20687 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ ((𝑚 · 𝑛) ∈ 𝐵 ∧ (𝑥 · 𝑦) ∈ 𝑃)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
3933, 34, 36, 37, 38syl22anc 837 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃)
4032, 39eqeltrd 2838 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) ∈ 𝑃)
4123, 40eqeltrd 2838 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) ∈ 𝑃)
428ad2antrr 724 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑅 ∈ Ring)
4342ad2antrr 724 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑅 ∈ Ring)
44 simpllr 774 . . . . . . . . . . . . 13 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))
454, 5, 12rspsnel 32160 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦)))
4645biimpa 477 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4743, 29, 44, 46syl21anc 836 . . . . . . . . . . . 12 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → ∃𝑛𝐵 𝑠 = (𝑛 · 𝑦))
4841, 47r19.29a 3159 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → (𝑟 · 𝑠) ∈ 𝑃)
49 simplr 767 . . . . . . . . . . . 12 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}))
504, 5, 12rspsnel 32160 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥)))
5150biimpa 477 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5242, 26, 49, 51syl21anc 836 . . . . . . . . . . 11 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑚𝐵 𝑟 = (𝑚 · 𝑥))
5348, 52r19.29a 3159 . . . . . . . . . 10 (((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → (𝑟 · 𝑠) ∈ 𝑃)
5453anasss 467 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))) → (𝑟 · 𝑠) ∈ 𝑃)
5554ralrimivva 3197 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃)
564, 5prmidl 32212 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))) ∧ ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
578, 9, 20, 55, 56syl1111anc 838 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃))
584, 12rspsnid 32161 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
591, 58sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑥𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
6059adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}))
61 ssel 3937 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}) → 𝑥𝑃))
6260, 61syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃𝑥𝑃))
634, 12rspsnid 32161 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
641, 63sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
6564adantlr 713 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}))
66 ssel 3937 . . . . . . . . . . 11 (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃 → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}) → 𝑦𝑃))
6765, 66syl5com 31 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃𝑦𝑃))
6862, 67orim12d 963 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
6968adantllr 717 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7069adantr 481 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥𝑃𝑦𝑃)))
7157, 70mpd 15 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (𝑥𝑃𝑦𝑃))
7271ex 413 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7372anasss 467 . . . 4 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
7473ralrimivva 3197 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
753, 7, 743jca 1128 . 2 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
76 3anass 1095 . . . 4 ((𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
774, 5prmidl2 32213 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7877anasss 467 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))) → 𝑃 ∈ (PrmIdeal‘𝑅))
7976, 78sylan2b 594 . . 3 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
801, 79sylan 580 . 2 ((𝑅 ∈ CRing ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
8175, 80impbida 799 1 (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  .rcmulr 17134  Ringcrg 19964  CRingccrg 19965  LIdealclidl 20631  RSpancrsp 20632  PrmIdealcprmidl 32207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-prmidl 32208
This theorem is referenced by:  prmidlc  32221  prmidl0  32223  qsidomlem2  32226
  Copyright terms: Public domain W3C validator