Step | Hyp | Ref
| Expression |
1 | | crngring 19710 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | | prmidlidl 31521 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) |
3 | 1, 2 | sylan 579 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ∈ (LIdeal‘𝑅)) |
4 | | isprmidlc.1 |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
5 | | isprmidlc.2 |
. . . . 5
⊢ · =
(.r‘𝑅) |
6 | 4, 5 | prmidlnr 31516 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ≠ 𝐵) |
7 | 1, 6 | sylan 579 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃 ≠ 𝐵) |
8 | 1 | ad4antr 728 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑅 ∈ Ring) |
9 | | simp-4r 780 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
10 | | simpllr 772 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑥 ∈ 𝐵) |
11 | 10 | snssd 4739 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑥} ⊆ 𝐵) |
12 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
13 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
14 | 12, 4, 13 | rspcl 20406 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅)) |
15 | 8, 11, 14 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅)) |
16 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → 𝑦 ∈ 𝐵) |
17 | 16 | snssd 4739 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → {𝑦} ⊆ 𝐵) |
18 | 12, 4, 13 | rspcl 20406 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅)) |
19 | 8, 17, 18 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅)) |
20 | 15, 19 | jca 511 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))) |
21 | | simpllr 772 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑟 = (𝑚 · 𝑥)) |
22 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑠 = (𝑛 · 𝑦)) |
23 | 21, 22 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) = ((𝑚 · 𝑥) · (𝑛 · 𝑦))) |
24 | | simp-10l 791 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ CRing) |
25 | | simp-4r 780 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑚 ∈ 𝐵) |
26 | 10 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑥 ∈ 𝐵) |
27 | 26 | ad4antr 728 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑥 ∈ 𝐵) |
28 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑛 ∈ 𝐵) |
29 | 16 | ad4antr 728 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑦 ∈ 𝐵) |
30 | 29 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑦 ∈ 𝐵) |
31 | 4, 5 | cringm4 31524 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ (𝑚 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ (𝑛 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦))) |
32 | 24, 25, 27, 28, 30, 31 | syl122anc 1377 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) = ((𝑚 · 𝑛) · (𝑥 · 𝑦))) |
33 | 24, 1 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑅 ∈ Ring) |
34 | 3 | ad9antr 738 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → 𝑃 ∈ (LIdeal‘𝑅)) |
35 | 4, 5 | ringcl 19715 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝑚 ∈ 𝐵 ∧ 𝑛 ∈ 𝐵) → (𝑚 · 𝑛) ∈ 𝐵) |
36 | 33, 25, 28, 35 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑚 · 𝑛) ∈ 𝐵) |
37 | | simp-7r 786 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑥 · 𝑦) ∈ 𝑃) |
38 | 13, 4, 5 | lidlmcl 20401 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ ((𝑚 · 𝑛) ∈ 𝐵 ∧ (𝑥 · 𝑦) ∈ 𝑃)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃) |
39 | 33, 34, 36, 37, 38 | syl22anc 835 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑛) · (𝑥 · 𝑦)) ∈ 𝑃) |
40 | 32, 39 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → ((𝑚 · 𝑥) · (𝑛 · 𝑦)) ∈ 𝑃) |
41 | 23, 40 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) ∧ 𝑛 ∈ 𝐵) ∧ 𝑠 = (𝑛 · 𝑦)) → (𝑟 · 𝑠) ∈ 𝑃) |
42 | 8 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑅 ∈ Ring) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑅 ∈ Ring) |
44 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) |
45 | 4, 5, 12 | rspsnel 31469 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → (𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑛 ∈ 𝐵 𝑠 = (𝑛 · 𝑦))) |
46 | 45 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑛 ∈ 𝐵 𝑠 = (𝑛 · 𝑦)) |
47 | 43, 29, 44, 46 | syl21anc 834 |
. . . . . . . . . . . 12
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → ∃𝑛 ∈ 𝐵 𝑠 = (𝑛 · 𝑦)) |
48 | 41, 47 | r19.29a 3217 |
. . . . . . . . . . 11
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) ∧ 𝑚 ∈ 𝐵) ∧ 𝑟 = (𝑚 · 𝑥)) → (𝑟 · 𝑠) ∈ 𝑃) |
49 | | simplr 765 |
. . . . . . . . . . . 12
⊢
(((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) |
50 | 4, 5, 12 | rspsnel 31469 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑚 ∈ 𝐵 𝑟 = (𝑚 · 𝑥))) |
51 | 50 | biimpa 476 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑚 ∈ 𝐵 𝑟 = (𝑚 · 𝑥)) |
52 | 42, 26, 49, 51 | syl21anc 834 |
. . . . . . . . . . 11
⊢
(((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑚 ∈ 𝐵 𝑟 = (𝑚 · 𝑥)) |
53 | 48, 52 | r19.29a 3217 |
. . . . . . . . . 10
⊢
(((((((𝑅 ∈
CRing ∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ 𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})) → (𝑟 · 𝑠) ∈ 𝑃) |
54 | 53 | anasss 466 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) ∧ (𝑟 ∈ ((RSpan‘𝑅)‘{𝑥}) ∧ 𝑠 ∈ ((RSpan‘𝑅)‘{𝑦}))) → (𝑟 · 𝑠) ∈ 𝑃) |
55 | 54 | ralrimivva 3114 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃) |
56 | 4, 5 | prmidl 31517 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (((RSpan‘𝑅)‘{𝑥}) ∈ (LIdeal‘𝑅) ∧ ((RSpan‘𝑅)‘{𝑦}) ∈ (LIdeal‘𝑅))) ∧ ∀𝑟 ∈ ((RSpan‘𝑅)‘{𝑥})∀𝑠 ∈ ((RSpan‘𝑅)‘{𝑦})(𝑟 · 𝑠) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃)) |
57 | 8, 9, 20, 55, 56 | syl1111anc 836 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃)) |
58 | 4, 12 | rspsnid 31470 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥})) |
59 | 1, 58 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥})) |
60 | 59 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ ((RSpan‘𝑅)‘{𝑥})) |
61 | | ssel 3910 |
. . . . . . . . . . 11
⊢
(((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 → (𝑥 ∈ ((RSpan‘𝑅)‘{𝑥}) → 𝑥 ∈ 𝑃)) |
62 | 60, 61 | syl5com 31 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 → 𝑥 ∈ 𝑃)) |
63 | 4, 12 | rspsnid 31470 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦})) |
64 | 1, 63 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦})) |
65 | 64 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ((RSpan‘𝑅)‘{𝑦})) |
66 | | ssel 3910 |
. . . . . . . . . . 11
⊢
(((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃 → (𝑦 ∈ ((RSpan‘𝑅)‘{𝑦}) → 𝑦 ∈ 𝑃)) |
67 | 65, 66 | syl5com 31 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃 → 𝑦 ∈ 𝑃)) |
68 | 62, 67 | orim12d 961 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
69 | 68 | adantllr 715 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
70 | 69 | adantr 480 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → ((((RSpan‘𝑅)‘{𝑥}) ⊆ 𝑃 ∨ ((RSpan‘𝑅)‘{𝑦}) ⊆ 𝑃) → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
71 | 57, 70 | mpd 15 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑃 ∈
(PrmIdeal‘𝑅)) ∧
𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝑥 · 𝑦) ∈ 𝑃) → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) |
72 | 71 | ex 412 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
73 | 72 | anasss 466 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
74 | 73 | ralrimivva 3114 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
75 | 3, 7, 74 | 3jca 1126 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) |
76 | | 3anass 1093 |
. . . 4
⊢ ((𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))))) |
77 | 4, 5 | prmidl2 31518 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
78 | 77 | anasss 466 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
79 | 76, 78 | sylan2b 593 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
80 | 1, 79 | sylan 579 |
. 2
⊢ ((𝑅 ∈ CRing ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
81 | 75, 80 | impbida 797 |
1
⊢ (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))))) |