Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl2 Structured version   Visualization version   GIF version

Theorem prmidl2 30958
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 35363 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem prmidl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃)
2 simplrr 776 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏 ∈ (LIdeal‘𝑅))
3 prmidlval.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4 eqid 2821 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 19983 . . . . . . . . 9 (𝑏 ∈ (LIdeal‘𝑅) → 𝑏𝐵)
62, 5syl 17 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏𝐵)
7 simplrl 775 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎 ∈ (LIdeal‘𝑅))
83, 4lidlss 19983 . . . . . . . . . 10 (𝑎 ∈ (LIdeal‘𝑅) → 𝑎𝐵)
97, 8syl 17 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎𝐵)
10 simpllr 774 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
11 ssralv 4033 . . . . . . . . 9 (𝑎𝐵 → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
129, 10, 11sylc 65 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
13 ssralv 4033 . . . . . . . . 9 (𝑏𝐵 → (∀𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
1413ralimdv 3178 . . . . . . . 8 (𝑏𝐵 → (∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
156, 12, 14sylc 65 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
16 r19.26-2 3171 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
17 pm3.35 801 . . . . . . . . 9 (((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → (𝑥𝑃𝑦𝑃))
18172ralimi 3161 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
1916, 18sylbir 237 . . . . . . 7 ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
201, 15, 19syl2anc 586 . . . . . 6 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
21 2ralor 3369 . . . . . . 7 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
22 dfss3 3956 . . . . . . . 8 (𝑎𝑃 ↔ ∀𝑥𝑎 𝑥𝑃)
23 dfss3 3956 . . . . . . . 8 (𝑏𝑃 ↔ ∀𝑦𝑏 𝑦𝑃)
2422, 23orbi12i 911 . . . . . . 7 ((𝑎𝑃𝑏𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
2521, 24sylbb2 240 . . . . . 6 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) → (𝑎𝑃𝑏𝑃))
2620, 25syl 17 . . . . 5 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → (𝑎𝑃𝑏𝑃))
2726ex 415 . . . 4 (((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
2827ralrimivva 3191 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
29 prmidlval.2 . . . . . 6 · = (.r𝑅)
303, 29isprmidl 30955 . . . . 5 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
3130biimpar 480 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
32313anassrs 1356 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3328, 32syldan 593 . 2 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3433anasss 469 1 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wss 3936  cfv 6355  (class class class)co 7156  Basecbs 16483  .rcmulr 16566  Ringcrg 19297  LIdealclidl 19942  PrmIdealcprmidl 30952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-sca 16581  df-vsca 16582  df-ip 16583  df-lss 19704  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-prmidl 30953
This theorem is referenced by:  isprmidlc  30963  qsidomlem1  30965  mxidlprm  30977
  Copyright terms: Public domain W3C validator