| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . 7
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) |
| 2 | | simplrr 778 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏 ∈ (LIdeal‘𝑅)) |
| 3 | | prmidlval.1 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | eqid 2737 |
. . . . . . . . . 10
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 5 | 3, 4 | lidlss 21222 |
. . . . . . . . 9
⊢ (𝑏 ∈ (LIdeal‘𝑅) → 𝑏 ⊆ 𝐵) |
| 6 | 2, 5 | syl 17 |
. . . . . . . 8
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏 ⊆ 𝐵) |
| 7 | | simplrl 777 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎 ∈ (LIdeal‘𝑅)) |
| 8 | 3, 4 | lidlss 21222 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (LIdeal‘𝑅) → 𝑎 ⊆ 𝐵) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎 ⊆ 𝐵) |
| 10 | | simpllr 776 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
| 11 | | ssralv 4052 |
. . . . . . . . 9
⊢ (𝑎 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) |
| 12 | 9, 10, 11 | sylc 65 |
. . . . . . . 8
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
| 13 | | ssralv 4052 |
. . . . . . . . 9
⊢ (𝑏 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) → ∀𝑦 ∈ 𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) |
| 14 | 13 | ralimdv 3169 |
. . . . . . . 8
⊢ (𝑏 ⊆ 𝐵 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) |
| 15 | 6, 12, 14 | sylc 65 |
. . . . . . 7
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) |
| 16 | | r19.26-2 3138 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ↔ (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) |
| 17 | | pm3.35 803 |
. . . . . . . . 9
⊢ (((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) |
| 18 | 17 | 2ralimi 3123 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) |
| 19 | 16, 18 | sylbir 235 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) |
| 20 | 1, 15, 19 | syl2anc 584 |
. . . . . 6
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)) |
| 21 | | 2ralor 3231 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃) ↔ (∀𝑥 ∈ 𝑎 𝑥 ∈ 𝑃 ∨ ∀𝑦 ∈ 𝑏 𝑦 ∈ 𝑃)) |
| 22 | | dfss3 3972 |
. . . . . . . 8
⊢ (𝑎 ⊆ 𝑃 ↔ ∀𝑥 ∈ 𝑎 𝑥 ∈ 𝑃) |
| 23 | | dfss3 3972 |
. . . . . . . 8
⊢ (𝑏 ⊆ 𝑃 ↔ ∀𝑦 ∈ 𝑏 𝑦 ∈ 𝑃) |
| 24 | 22, 23 | orbi12i 915 |
. . . . . . 7
⊢ ((𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃) ↔ (∀𝑥 ∈ 𝑎 𝑥 ∈ 𝑃 ∨ ∀𝑦 ∈ 𝑏 𝑦 ∈ 𝑃)) |
| 25 | 21, 24 | sylbb2 238 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑎 ∀𝑦 ∈ 𝑏 (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃) → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) |
| 26 | 20, 25 | syl 17 |
. . . . 5
⊢
((((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃) → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) |
| 27 | 26 | ex 412 |
. . . 4
⊢
(((((𝑅 ∈ Ring
∧ 𝑃 ∈
(LIdeal‘𝑅)) ∧
𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
| 28 | 27 | ralrimivva 3202 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
| 29 | | prmidlval.2 |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 30 | 3, 29 | isprmidl 33466 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
| 31 | 30 | biimpar 477 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
| 32 | 31 | 3anassrs 1361 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃 ≠ 𝐵) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
| 33 | 28, 32 | syldan 591 |
. 2
⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃 ≠ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |
| 34 | 33 | anasss 466 |
1
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥 ∈ 𝑃 ∨ 𝑦 ∈ 𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅)) |