Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl2 Structured version   Visualization version   GIF version

Theorem prmidl2 33469
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 38077 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem prmidl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃)
2 simplrr 778 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏 ∈ (LIdeal‘𝑅))
3 prmidlval.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4 eqid 2737 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 21222 . . . . . . . . 9 (𝑏 ∈ (LIdeal‘𝑅) → 𝑏𝐵)
62, 5syl 17 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏𝐵)
7 simplrl 777 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎 ∈ (LIdeal‘𝑅))
83, 4lidlss 21222 . . . . . . . . . 10 (𝑎 ∈ (LIdeal‘𝑅) → 𝑎𝐵)
97, 8syl 17 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎𝐵)
10 simpllr 776 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
11 ssralv 4052 . . . . . . . . 9 (𝑎𝐵 → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
129, 10, 11sylc 65 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
13 ssralv 4052 . . . . . . . . 9 (𝑏𝐵 → (∀𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
1413ralimdv 3169 . . . . . . . 8 (𝑏𝐵 → (∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
156, 12, 14sylc 65 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
16 r19.26-2 3138 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
17 pm3.35 803 . . . . . . . . 9 (((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → (𝑥𝑃𝑦𝑃))
18172ralimi 3123 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
1916, 18sylbir 235 . . . . . . 7 ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
201, 15, 19syl2anc 584 . . . . . 6 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
21 2ralor 3231 . . . . . . 7 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
22 dfss3 3972 . . . . . . . 8 (𝑎𝑃 ↔ ∀𝑥𝑎 𝑥𝑃)
23 dfss3 3972 . . . . . . . 8 (𝑏𝑃 ↔ ∀𝑦𝑏 𝑦𝑃)
2422, 23orbi12i 915 . . . . . . 7 ((𝑎𝑃𝑏𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
2521, 24sylbb2 238 . . . . . 6 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) → (𝑎𝑃𝑏𝑃))
2620, 25syl 17 . . . . 5 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → (𝑎𝑃𝑏𝑃))
2726ex 412 . . . 4 (((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
2827ralrimivva 3202 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
29 prmidlval.2 . . . . . 6 · = (.r𝑅)
303, 29isprmidl 33466 . . . . 5 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
3130biimpar 477 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
32313anassrs 1361 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3328, 32syldan 591 . 2 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3433anasss 466 1 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  Ringcrg 20230  LIdealclidl 21216  PrmIdealcprmidl 33463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-sca 17313  df-vsca 17314  df-ip 17315  df-lss 20930  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-prmidl 33464
This theorem is referenced by:  isprmidlc  33475  rhmpreimaprmidl  33479  qsidomlem1  33480  mxidlprm  33498
  Copyright terms: Public domain W3C validator