Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl2 Structured version   Visualization version   GIF version

Theorem prmidl2 32213
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 36529 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem prmidl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃)
2 simplrr 776 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏 ∈ (LIdeal‘𝑅))
3 prmidlval.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4 eqid 2736 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 20680 . . . . . . . . 9 (𝑏 ∈ (LIdeal‘𝑅) → 𝑏𝐵)
62, 5syl 17 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏𝐵)
7 simplrl 775 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎 ∈ (LIdeal‘𝑅))
83, 4lidlss 20680 . . . . . . . . . 10 (𝑎 ∈ (LIdeal‘𝑅) → 𝑎𝐵)
97, 8syl 17 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎𝐵)
10 simpllr 774 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
11 ssralv 4010 . . . . . . . . 9 (𝑎𝐵 → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
129, 10, 11sylc 65 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
13 ssralv 4010 . . . . . . . . 9 (𝑏𝐵 → (∀𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
1413ralimdv 3166 . . . . . . . 8 (𝑏𝐵 → (∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
156, 12, 14sylc 65 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
16 r19.26-2 3135 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
17 pm3.35 801 . . . . . . . . 9 (((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → (𝑥𝑃𝑦𝑃))
18172ralimi 3126 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
1916, 18sylbir 234 . . . . . . 7 ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
201, 15, 19syl2anc 584 . . . . . 6 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
21 2ralor 3219 . . . . . . 7 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
22 dfss3 3932 . . . . . . . 8 (𝑎𝑃 ↔ ∀𝑥𝑎 𝑥𝑃)
23 dfss3 3932 . . . . . . . 8 (𝑏𝑃 ↔ ∀𝑦𝑏 𝑦𝑃)
2422, 23orbi12i 913 . . . . . . 7 ((𝑎𝑃𝑏𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
2521, 24sylbb2 237 . . . . . 6 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) → (𝑎𝑃𝑏𝑃))
2620, 25syl 17 . . . . 5 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → (𝑎𝑃𝑏𝑃))
2726ex 413 . . . 4 (((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
2827ralrimivva 3197 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
29 prmidlval.2 . . . . . 6 · = (.r𝑅)
303, 29isprmidl 32210 . . . . 5 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
3130biimpar 478 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
32313anassrs 1360 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3328, 32syldan 591 . 2 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3433anasss 467 1 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wss 3910  cfv 6496  (class class class)co 7357  Basecbs 17083  .rcmulr 17134  Ringcrg 19964  LIdealclidl 20631  PrmIdealcprmidl 32207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-sca 17149  df-vsca 17150  df-ip 17151  df-lss 20393  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-prmidl 32208
This theorem is referenced by:  isprmidlc  32220  rhmpreimaprmidl  32224  qsidomlem1  32225  mxidlprm  32237
  Copyright terms: Public domain W3C validator