Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl2 Structured version   Visualization version   GIF version

Theorem prmidl2 33434
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 38030 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem prmidl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃)
2 simplrr 777 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏 ∈ (LIdeal‘𝑅))
3 prmidlval.1 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4 eqid 2740 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 21245 . . . . . . . . 9 (𝑏 ∈ (LIdeal‘𝑅) → 𝑏𝐵)
62, 5syl 17 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑏𝐵)
7 simplrl 776 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎 ∈ (LIdeal‘𝑅))
83, 4lidlss 21245 . . . . . . . . . 10 (𝑎 ∈ (LIdeal‘𝑅) → 𝑎𝐵)
97, 8syl 17 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → 𝑎𝐵)
10 simpllr 775 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
11 ssralv 4077 . . . . . . . . 9 (𝑎𝐵 → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
129, 10, 11sylc 65 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
13 ssralv 4077 . . . . . . . . 9 (𝑏𝐵 → (∀𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
1413ralimdv 3175 . . . . . . . 8 (𝑏𝐵 → (∀𝑥𝑎𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
156, 12, 14sylc 65 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))
16 r19.26-2 3144 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))))
17 pm3.35 802 . . . . . . . . 9 (((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → (𝑥𝑃𝑦𝑃))
18172ralimi 3129 . . . . . . . 8 (∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 ∧ ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
1916, 18sylbir 235 . . . . . . 7 ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
201, 15, 19syl2anc 583 . . . . . 6 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → ∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃))
21 2ralor 3237 . . . . . . 7 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
22 dfss3 3997 . . . . . . . 8 (𝑎𝑃 ↔ ∀𝑥𝑎 𝑥𝑃)
23 dfss3 3997 . . . . . . . 8 (𝑏𝑃 ↔ ∀𝑦𝑏 𝑦𝑃)
2422, 23orbi12i 913 . . . . . . 7 ((𝑎𝑃𝑏𝑃) ↔ (∀𝑥𝑎 𝑥𝑃 ∨ ∀𝑦𝑏 𝑦𝑃))
2521, 24sylbb2 238 . . . . . 6 (∀𝑥𝑎𝑦𝑏 (𝑥𝑃𝑦𝑃) → (𝑎𝑃𝑏𝑃))
2620, 25syl 17 . . . . 5 ((((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃) → (𝑎𝑃𝑏𝑃))
2726ex 412 . . . 4 (((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) ∧ (𝑎 ∈ (LIdeal‘𝑅) ∧ 𝑏 ∈ (LIdeal‘𝑅))) → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
2827ralrimivva 3208 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
29 prmidlval.2 . . . . . 6 · = (.r𝑅)
303, 29isprmidl 33431 . . . . 5 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
3130biimpar 477 . . . 4 ((𝑅 ∈ Ring ∧ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
32313anassrs 1360 . . 3 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3328, 32syldan 590 . 2 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ 𝑃𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃))) → 𝑃 ∈ (PrmIdeal‘𝑅))
3433anasss 466 1 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (LIdeal‘𝑅)) ∧ (𝑃𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) ∈ 𝑃 → (𝑥𝑃𝑦𝑃)))) → 𝑃 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  Ringcrg 20260  LIdealclidl 21239  PrmIdealcprmidl 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-sca 17327  df-vsca 17328  df-ip 17329  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-prmidl 33429
This theorem is referenced by:  isprmidlc  33440  rhmpreimaprmidl  33444  qsidomlem1  33445  mxidlprm  33463
  Copyright terms: Public domain W3C validator