Step | Hyp | Ref
| Expression |
1 | | df-prmidl 31513 |
. 2
⊢ PrmIdeal
= (𝑟 ∈ Ring ↦
{𝑖 ∈
(LIdeal‘𝑟) ∣
(𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
2 | | fveq2 6756 |
. . 3
⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) |
3 | | fveq2 6756 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
4 | | prmidlval.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
5 | 3, 4 | eqtr4di 2797 |
. . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
6 | 5 | neeq2d 3003 |
. . . 4
⊢ (𝑟 = 𝑅 → (𝑖 ≠ (Base‘𝑟) ↔ 𝑖 ≠ 𝐵)) |
7 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
8 | | prmidlval.2 |
. . . . . . . . . . 11
⊢ · =
(.r‘𝑅) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
10 | 9 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) |
11 | 10 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((𝑥(.r‘𝑟)𝑦) ∈ 𝑖 ↔ (𝑥 · 𝑦) ∈ 𝑖)) |
12 | 11 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖)) |
13 | 12 | imbi1d 341 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) ↔ (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))) |
14 | 2, 13 | raleqbidv 3327 |
. . . . 5
⊢ (𝑟 = 𝑅 → (∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))) |
15 | 2, 14 | raleqbidv 3327 |
. . . 4
⊢ (𝑟 = 𝑅 → (∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)) ↔ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))) |
16 | 6, 15 | anbi12d 630 |
. . 3
⊢ (𝑟 = 𝑅 → ((𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖))) ↔ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖))))) |
17 | 2, 16 | rabeqbidv 3410 |
. 2
⊢ (𝑟 = 𝑅 → {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
18 | | id 22 |
. 2
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) |
19 | | eqid 2738 |
. . 3
⊢ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} |
20 | | fvexd 6771 |
. . 3
⊢ (𝑅 ∈ Ring →
(LIdeal‘𝑅) ∈
V) |
21 | 19, 20 | rabexd 5252 |
. 2
⊢ (𝑅 ∈ Ring → {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))} ∈ V) |
22 | 1, 17, 18, 21 | fvmptd3 6880 |
1
⊢ (𝑅 ∈ Ring →
(PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |