Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidlval Structured version   Visualization version   GIF version

Theorem prmidlval 33457
Description: The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidlval (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Distinct variable group:   𝑅,𝑎,𝑏,𝑖,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑖,𝑎,𝑏)   · (𝑥,𝑦,𝑖,𝑎,𝑏)

Proof of Theorem prmidlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-prmidl 33456 . 2 PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
2 fveq2 6881 . . 3 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
3 fveq2 6881 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
4 prmidlval.1 . . . . . 6 𝐵 = (Base‘𝑅)
53, 4eqtr4di 2789 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
65neeq2d 2993 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ (Base‘𝑟) ↔ 𝑖𝐵))
7 fveq2 6881 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
8 prmidlval.2 . . . . . . . . . . 11 · = (.r𝑅)
97, 8eqtr4di 2789 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = · )
109oveqd 7427 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
1110eleq1d 2820 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑥(.r𝑟)𝑦) ∈ 𝑖 ↔ (𝑥 · 𝑦) ∈ 𝑖))
12112ralbidv 3209 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 ↔ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖))
1312imbi1d 341 . . . . . 6 (𝑟 = 𝑅 → ((∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
142, 13raleqbidv 3329 . . . . 5 (𝑟 = 𝑅 → (∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
152, 14raleqbidv 3329 . . . 4 (𝑟 = 𝑅 → (∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))))
166, 15anbi12d 632 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))) ↔ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))))
172, 16rabeqbidv 3439 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
18 id 22 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
19 eqid 2736 . . 3 {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))}
20 fvexd 6896 . . 3 (𝑅 ∈ Ring → (LIdeal‘𝑅) ∈ V)
2119, 20rabexd 5315 . 2 (𝑅 ∈ Ring → {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} ∈ V)
221, 17, 18, 21fvmptd3 7014 1 (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  Vcvv 3464  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  Ringcrg 20198  LIdealclidl 21172  PrmIdealcprmidl 33455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-prmidl 33456
This theorem is referenced by:  isprmidl  33458
  Copyright terms: Public domain W3C validator