Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrwlkdvspth | Structured version Visualization version GIF version |
Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 27671. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.) |
Ref | Expression |
---|---|
upgrwlkdvspth | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1151 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
2 | upgrspthswlk 27671 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) | |
3 | 2 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
4 | 3 | breqd 5038 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(SPaths‘𝐺)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}𝑃)) |
5 | wlkv 27546 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
6 | 3simpc 1151 | . . . . . 6 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
8 | 7 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
9 | breq12 5032 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(Walks‘𝐺)𝑝 ↔ 𝐹(Walks‘𝐺)𝑃)) | |
10 | cnveq 5710 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ◡𝑝 = ◡𝑃) | |
11 | 10 | funeqd 6355 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
12 | 11 | adantl 485 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
13 | 9, 12 | anbi12d 634 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
14 | eqid 2738 | . . . . 5 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)} | |
15 | 13, 14 | brabga 5386 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
16 | 8, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
17 | 4, 16 | bitrd 282 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
18 | 1, 17 | mpbird 260 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 Vcvv 3397 class class class wbr 5027 {copab 5089 ◡ccnv 5518 Fun wfun 6327 ‘cfv 6333 UPGraphcupgr 27017 Walkscwlks 27530 SPathscspths 27646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-oadd 8128 df-er 8313 df-map 8432 df-pm 8433 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-dju 9396 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-n0 11970 df-xnn0 12042 df-z 12056 df-uz 12318 df-fz 12975 df-fzo 13118 df-hash 13776 df-word 13949 df-edg 26985 df-uhgr 26995 df-upgr 27019 df-wlks 27533 df-trls 27626 df-spths 27650 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |