MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvspth Structured version   Visualization version   GIF version

Theorem upgrwlkdvspth 29676
Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29675. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvspth ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem upgrwlkdvspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1150 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃))
2 upgrspthswlk 29675 . . . . 5 (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
323ad2ant1 1133 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
43breqd 5121 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃))
5 wlkv 29547 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
6 3simpc 1150 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
75, 6syl 17 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
873ad2ant2 1134 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 breq12 5115 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(Walks‘𝐺)𝑝𝐹(Walks‘𝐺)𝑃))
10 cnveq 5840 . . . . . . . 8 (𝑝 = 𝑃𝑝 = 𝑃)
1110funeqd 6541 . . . . . . 7 (𝑝 = 𝑃 → (Fun 𝑝 ↔ Fun 𝑃))
1211adantl 481 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑝 ↔ Fun 𝑃))
139, 12anbi12d 632 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
14 eqid 2730 . . . . 5 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}
1513, 14brabga 5497 . . . 4 ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
168, 15syl 17 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
174, 16bitrd 279 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
181, 17mpbird 257 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110  {copab 5172  ccnv 5640  Fun wfun 6508  cfv 6514  UPGraphcupgr 29014  Walkscwlks 29531  SPathscspths 29648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-wlks 29534  df-trls 29627  df-spths 29652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator