MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvspth Structured version   Visualization version   GIF version

Theorem upgrwlkdvspth 29592
Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29591. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvspth ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ 𝐹(SPathsβ€˜πΊ)𝑃)

Proof of Theorem upgrwlkdvspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1147 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃))
2 upgrspthswlk 29591 . . . . 5 (𝐺 ∈ UPGraph β†’ (SPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)})
323ad2ant1 1130 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (SPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)})
43breqd 5155 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹(SPathsβ€˜πΊ)𝑃 ↔ 𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}𝑃))
5 wlkv 29465 . . . . . 6 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
6 3simpc 1147 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
75, 6syl 17 . . . . 5 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
873ad2ant2 1131 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 breq12 5149 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ↔ 𝐹(Walksβ€˜πΊ)𝑃))
10 cnveq 5871 . . . . . . . 8 (𝑝 = 𝑃 β†’ ◑𝑝 = ◑𝑃)
1110funeqd 6570 . . . . . . 7 (𝑝 = 𝑃 β†’ (Fun ◑𝑝 ↔ Fun ◑𝑃))
1211adantl 480 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (Fun ◑𝑝 ↔ Fun ◑𝑃))
139, 12anbi12d 630 . . . . 5 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝) ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
14 eqid 2725 . . . . 5 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)} = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}
1513, 14brabga 5531 . . . 4 ((𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
168, 15syl 17 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
174, 16bitrd 278 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹(SPathsβ€˜πΊ)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
181, 17mpbird 256 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ 𝐹(SPathsβ€˜πΊ)𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3463   class class class wbr 5144  {copab 5206  β—‘ccnv 5672  Fun wfun 6537  β€˜cfv 6543  UPGraphcupgr 28932  Walkscwlks 29449  SPathscspths 29566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-edg 28900  df-uhgr 28910  df-upgr 28934  df-wlks 29452  df-trls 29545  df-spths 29570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator