MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvspth Structured version   Visualization version   GIF version

Theorem upgrwlkdvspth 29775
Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29774. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvspth ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem upgrwlkdvspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1150 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃))
2 upgrspthswlk 29774 . . . . 5 (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
323ad2ant1 1133 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (SPaths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)})
43breqd 5177 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃))
5 wlkv 29648 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
6 3simpc 1150 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
75, 6syl 17 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
873ad2ant2 1134 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 breq12 5171 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(Walks‘𝐺)𝑝𝐹(Walks‘𝐺)𝑃))
10 cnveq 5898 . . . . . . . 8 (𝑝 = 𝑃𝑝 = 𝑃)
1110funeqd 6600 . . . . . . 7 (𝑝 = 𝑃 → (Fun 𝑝 ↔ Fun 𝑃))
1211adantl 481 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (Fun 𝑝 ↔ Fun 𝑃))
139, 12anbi12d 631 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
14 eqid 2740 . . . . 5 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}
1513, 14brabga 5553 . . . 4 ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
168, 15syl 17 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
174, 16bitrd 279 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃)))
181, 17mpbird 257 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  {copab 5228  ccnv 5699  Fun wfun 6567  cfv 6573  UPGraphcupgr 29115  Walkscwlks 29632  SPathscspths 29749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-wlks 29635  df-trls 29728  df-spths 29753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator