MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrwlkdvspth Structured version   Visualization version   GIF version

Theorem upgrwlkdvspth 29540
Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29539. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvspth ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ 𝐹(SPathsβ€˜πΊ)𝑃)

Proof of Theorem upgrwlkdvspth
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1148 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃))
2 upgrspthswlk 29539 . . . . 5 (𝐺 ∈ UPGraph β†’ (SPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)})
323ad2ant1 1131 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (SPathsβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)})
43breqd 5153 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹(SPathsβ€˜πΊ)𝑃 ↔ 𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}𝑃))
5 wlkv 29413 . . . . . 6 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
6 3simpc 1148 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
75, 6syl 17 . . . . 5 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
873ad2ant2 1132 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 breq12 5147 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ↔ 𝐹(Walksβ€˜πΊ)𝑃))
10 cnveq 5870 . . . . . . . 8 (𝑝 = 𝑃 β†’ ◑𝑝 = ◑𝑃)
1110funeqd 6569 . . . . . . 7 (𝑝 = 𝑃 β†’ (Fun ◑𝑝 ↔ Fun ◑𝑃))
1211adantl 481 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (Fun ◑𝑝 ↔ Fun ◑𝑃))
139, 12anbi12d 630 . . . . 5 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝) ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
14 eqid 2727 . . . . 5 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)} = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}
1513, 14brabga 5530 . . . 4 ((𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
168, 15syl 17 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ Fun ◑𝑝)}𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
174, 16bitrd 279 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ (𝐹(SPathsβ€˜πΊ)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃)))
181, 17mpbird 257 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝑃) β†’ 𝐹(SPathsβ€˜πΊ)𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  Vcvv 3469   class class class wbr 5142  {copab 5204  β—‘ccnv 5671  Fun wfun 6536  β€˜cfv 6542  UPGraphcupgr 28880  Walkscwlks 29397  SPathscspths 29514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-edg 28848  df-uhgr 28858  df-upgr 28882  df-wlks 29400  df-trls 29493  df-spths 29518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator