| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrwlkdvspth | Structured version Visualization version GIF version | ||
| Description: A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29675. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.) |
| Ref | Expression |
|---|---|
| upgrwlkdvspth | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1150 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 2 | upgrspthswlk 29675 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) | |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) |
| 4 | 3 | breqd 5121 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(SPaths‘𝐺)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}𝑃)) |
| 5 | wlkv 29547 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 6 | 3simpc 1150 | . . . . . 6 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| 8 | 7 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| 9 | breq12 5115 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(Walks‘𝐺)𝑝 ↔ 𝐹(Walks‘𝐺)𝑃)) | |
| 10 | cnveq 5840 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ◡𝑝 = ◡𝑃) | |
| 11 | 10 | funeqd 6541 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
| 13 | 9, 12 | anbi12d 632 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
| 14 | eqid 2730 | . . . . 5 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)} | |
| 15 | 13, 14 | brabga 5497 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
| 16 | 8, 15 | syl 17 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
| 17 | 4, 16 | bitrd 279 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
| 18 | 1, 17 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 {copab 5172 ◡ccnv 5640 Fun wfun 6508 ‘cfv 6514 UPGraphcupgr 29014 Walkscwlks 29531 SPathscspths 29648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-wlks 29534 df-trls 29627 df-spths 29652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |