MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthsfval Structured version   Visualization version   GIF version

Theorem pthsfval 27990
Description: The set of paths (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
pthsfval (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem pthsfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 biidd 261 . . . 4 ((⊤ ∧ 𝑔 = 𝐺) → ((Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)))
2 wksv 27889 . . . . . 6 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
3 trliswlk 27967 . . . . . . 7 (𝑓(Trails‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
43ssopab2i 5456 . . . . . 6 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Trails‘𝐺)𝑝} ⊆ {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝}
52, 4ssexi 5241 . . . . 5 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Trails‘𝐺)𝑝} ∈ V
65a1i 11 . . . 4 (⊤ → {⟨𝑓, 𝑝⟩ ∣ 𝑓(Trails‘𝐺)𝑝} ∈ V)
7 df-pths 27985 . . . . 5 Paths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)})
8 3anass 1093 . . . . . . 7 ((𝑓(Trails‘𝑔)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (𝑓(Trails‘𝑔)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)))
98opabbii 5137 . . . . . 6 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
109mpteq2i 5175 . . . . 5 (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))})
117, 10eqtri 2766 . . . 4 Paths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))})
121, 6, 11fvmptopab 7308 . . 3 (⊤ → (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))})
1312mptru 1546 . 2 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))}
14 3anass 1093 . . . 4 ((𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅) ↔ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)))
1514bicomi 223 . . 3 ((𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)) ↔ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))
1615opabbii 5137 . 2 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ (Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅))} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}
1713, 16eqtri 2766 1 (Paths‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  Vcvv 3422  cin 3882  c0 4253  {cpr 4560   class class class wbr 5070  {copab 5132  cmpt 5153  ccnv 5579  cres 5582  cima 5583  Fun wfun 6412  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  ..^cfzo 13311  chash 13972  Walkscwlks 27866  Trailsctrls 27960  Pathscpths 27981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wlks 27869  df-trls 27962  df-pths 27985
This theorem is referenced by:  ispth  27992
  Copyright terms: Public domain W3C validator