Step | Hyp | Ref
| Expression |
1 | | biidd 262 |
. . 3
β’ (π = πΊ β ((Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) = β
) β (Fun
β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))) |
2 | | df-pths 29241 |
. . . 4
β’ Paths =
(π β V β¦
{β¨π, πβ© β£ (π(Trailsβπ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
)}) |
3 | | 3anass 1094 |
. . . . . 6
β’ ((π(Trailsβπ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) = β
) β (π(Trailsβπ)π β§ (Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))) |
4 | 3 | opabbii 5215 |
. . . . 5
β’
{β¨π, πβ© β£ (π(Trailsβπ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) = β
)} = {β¨π, πβ© β£ (π(Trailsβπ)π β§ (Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))} |
5 | 4 | mpteq2i 5253 |
. . . 4
β’ (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) = β
)}) = (π β V β¦ {β¨π, πβ© β£ (π(Trailsβπ)π β§ (Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))}) |
6 | 2, 5 | eqtri 2759 |
. . 3
β’ Paths =
(π β V β¦
{β¨π, πβ© β£ (π(Trailsβπ)π β§ (Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))}) |
7 | 1, 6 | fvmptopab 7466 |
. 2
β’
(PathsβπΊ) =
{β¨π, πβ© β£ (π(TrailsβπΊ)π β§ (Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))} |
8 | | 3anass 1094 |
. . 3
β’ ((π(TrailsβπΊ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) = β
) β (π(TrailsβπΊ)π β§ (Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))) |
9 | 8 | opabbii 5215 |
. 2
β’
{β¨π, πβ© β£ (π(TrailsβπΊ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) = β
)} = {β¨π, πβ© β£ (π(TrailsβπΊ)π β§ (Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
))} |
10 | 7, 9 | eqtr4i 2762 |
1
β’
(PathsβπΊ) =
{β¨π, πβ© β£ (π(TrailsβπΊ)π β§ Fun β‘(π βΎ (1..^(β―βπ))) β§ ((π β {0, (β―βπ)}) β© (π β (1..^(β―βπ)))) =
β
)} |