MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  q1pval Structured version   Visualization version   GIF version

Theorem q1pval 26060
Description: Value of the univariate polynomial quotient function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
q1pval.q 𝑄 = (quot1p𝑅)
q1pval.p 𝑃 = (Poly1𝑅)
q1pval.b 𝐵 = (Base‘𝑃)
q1pval.d 𝐷 = (deg1𝑅)
q1pval.m = (-g𝑃)
q1pval.t · = (.r𝑃)
Assertion
Ref Expression
q1pval ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
Distinct variable groups:   𝐵,𝑞   𝐹,𝑞   𝐺,𝑞   𝑃,𝑞   𝑅,𝑞
Allowed substitution hints:   𝐷(𝑞)   𝑄(𝑞)   · (𝑞)   (𝑞)

Proof of Theorem q1pval
Dummy variables 𝑏 𝑓 𝑔 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 q1pval.p . . . . 5 𝑃 = (Poly1𝑅)
2 q1pval.b . . . . 5 𝐵 = (Base‘𝑃)
31, 2elbasfv 17185 . . . 4 (𝐺𝐵𝑅 ∈ V)
4 q1pval.q . . . . 5 𝑄 = (quot1p𝑅)
5 fveq2 6858 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
65, 1eqtr4di 2782 . . . . . . . 8 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
76csbeq1d 3866 . . . . . . 7 (𝑟 = 𝑅(Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))) = 𝑃 / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
81fvexi 6872 . . . . . . . . 9 𝑃 ∈ V
98a1i 11 . . . . . . . 8 (𝑟 = 𝑅𝑃 ∈ V)
10 fveq2 6858 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (Base‘𝑝) = (Base‘𝑃))
1110adantl 481 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑝 = 𝑃) → (Base‘𝑝) = (Base‘𝑃))
1211, 2eqtr4di 2782 . . . . . . . . . 10 ((𝑟 = 𝑅𝑝 = 𝑃) → (Base‘𝑝) = 𝐵)
1312csbeq1d 3866 . . . . . . . . 9 ((𝑟 = 𝑅𝑝 = 𝑃) → (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))) = 𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
142fvexi 6872 . . . . . . . . . . 11 𝐵 ∈ V
1514a1i 11 . . . . . . . . . 10 ((𝑟 = 𝑅𝑝 = 𝑃) → 𝐵 ∈ V)
16 simpr 484 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
17 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → (deg1𝑟) = (deg1𝑅))
1817ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (deg1𝑟) = (deg1𝑅))
19 q1pval.d . . . . . . . . . . . . . . 15 𝐷 = (deg1𝑅)
2018, 19eqtr4di 2782 . . . . . . . . . . . . . 14 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (deg1𝑟) = 𝐷)
21 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑃 → (-g𝑝) = (-g𝑃))
2221ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (-g𝑝) = (-g𝑃))
23 q1pval.m . . . . . . . . . . . . . . . 16 = (-g𝑃)
2422, 23eqtr4di 2782 . . . . . . . . . . . . . . 15 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (-g𝑝) = )
25 eqidd 2730 . . . . . . . . . . . . . . 15 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
26 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑃 → (.r𝑝) = (.r𝑃))
2726ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (.r𝑝) = (.r𝑃))
28 q1pval.t . . . . . . . . . . . . . . . . 17 · = (.r𝑃)
2927, 28eqtr4di 2782 . . . . . . . . . . . . . . . 16 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (.r𝑝) = · )
3029oveqd 7404 . . . . . . . . . . . . . . 15 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (𝑞(.r𝑝)𝑔) = (𝑞 · 𝑔))
3124, 25, 30oveq123d 7408 . . . . . . . . . . . . . 14 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)) = (𝑓 (𝑞 · 𝑔)))
3220, 31fveq12d 6865 . . . . . . . . . . . . 13 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) = (𝐷‘(𝑓 (𝑞 · 𝑔))))
3320fveq1d 6860 . . . . . . . . . . . . 13 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → ((deg1𝑟)‘𝑔) = (𝐷𝑔))
3432, 33breq12d 5120 . . . . . . . . . . . 12 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔) ↔ (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔)))
3516, 34riotaeqbidv 7347 . . . . . . . . . . 11 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)) = (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔)))
3616, 16, 35mpoeq123dv 7464 . . . . . . . . . 10 (((𝑟 = 𝑅𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
3715, 36csbied 3898 . . . . . . . . 9 ((𝑟 = 𝑅𝑝 = 𝑃) → 𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
3813, 37eqtrd 2764 . . . . . . . 8 ((𝑟 = 𝑅𝑝 = 𝑃) → (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
399, 38csbied 3898 . . . . . . 7 (𝑟 = 𝑅𝑃 / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
407, 39eqtrd 2764 . . . . . 6 (𝑟 = 𝑅(Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
41 df-q1p 26038 . . . . . 6 quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
4214, 14mpoex 8058 . . . . . 6 (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))) ∈ V
4340, 41, 42fvmpt 6968 . . . . 5 (𝑅 ∈ V → (quot1p𝑅) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
444, 43eqtrid 2776 . . . 4 (𝑅 ∈ V → 𝑄 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
453, 44syl 17 . . 3 (𝐺𝐵𝑄 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
4645adantl 481 . 2 ((𝐹𝐵𝐺𝐵) → 𝑄 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔))))
47 id 22 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
48 oveq2 7395 . . . . . . 7 (𝑔 = 𝐺 → (𝑞 · 𝑔) = (𝑞 · 𝐺))
4947, 48oveqan12d 7406 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓 (𝑞 · 𝑔)) = (𝐹 (𝑞 · 𝐺)))
5049fveq2d 6862 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝐷‘(𝑓 (𝑞 · 𝑔))) = (𝐷‘(𝐹 (𝑞 · 𝐺))))
51 fveq2 6858 . . . . . 6 (𝑔 = 𝐺 → (𝐷𝑔) = (𝐷𝐺))
5251adantl 481 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝐷𝑔) = (𝐷𝐺))
5350, 52breq12d 5120 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔) ↔ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
5453riotabidv 7346 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔)) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
5554adantl 481 . 2 (((𝐹𝐵𝐺𝐵) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑞𝐵 (𝐷‘(𝑓 (𝑞 · 𝑔))) < (𝐷𝑔)) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
56 simpl 482 . 2 ((𝐹𝐵𝐺𝐵) → 𝐹𝐵)
57 simpr 484 . 2 ((𝐹𝐵𝐺𝐵) → 𝐺𝐵)
58 riotaex 7348 . . 3 (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ∈ V
5958a1i 11 . 2 ((𝐹𝐵𝐺𝐵) → (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ∈ V)
6046, 55, 56, 57, 59ovmpod 7541 1 ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862   class class class wbr 5107  cfv 6511  crio 7343  (class class class)co 7387  cmpo 7389   < clt 11208  Basecbs 17179  .rcmulr 17221  -gcsg 18867  Poly1cpl1 22061  deg1cdg1 25959  quot1pcq1p 26033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-q1p 26038
This theorem is referenced by:  q1peqb  26061
  Copyright terms: Public domain W3C validator