Step | Hyp | Ref
| Expression |
1 | | q1pval.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | q1pval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
3 | 1, 2 | elbasfv 16846 |
. . . 4
⊢ (𝐺 ∈ 𝐵 → 𝑅 ∈ V) |
4 | | q1pval.q |
. . . . 5
⊢ 𝑄 =
(quot1p‘𝑅) |
5 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
6 | 5, 1 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) = 𝑃) |
7 | 6 | csbeq1d 3832 |
. . . . . . 7
⊢ (𝑟 = 𝑅 →
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) = ⦋𝑃 / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)))) |
8 | 1 | fvexi 6770 |
. . . . . . . . 9
⊢ 𝑃 ∈ V |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → 𝑃 ∈ V) |
10 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑃 → (Base‘𝑝) = (Base‘𝑃)) |
11 | 10 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) → (Base‘𝑝) = (Base‘𝑃)) |
12 | 11, 2 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) → (Base‘𝑝) = 𝐵) |
13 | 12 | csbeq1d 3832 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) → ⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) = ⦋𝐵 / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)))) |
14 | 2 | fvexi 6770 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
15 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) → 𝐵 ∈ V) |
16 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
17 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → ( deg1 ‘𝑟) = ( deg1
‘𝑅)) |
18 | 17 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → ( deg1 ‘𝑟) = ( deg1
‘𝑅)) |
19 | | q1pval.d |
. . . . . . . . . . . . . . 15
⊢ 𝐷 = ( deg1
‘𝑅) |
20 | 18, 19 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → ( deg1 ‘𝑟) = 𝐷) |
21 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑃 → (-g‘𝑝) = (-g‘𝑃)) |
22 | 21 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (-g‘𝑝) = (-g‘𝑃)) |
23 | | q1pval.m |
. . . . . . . . . . . . . . . 16
⊢ − =
(-g‘𝑃) |
24 | 22, 23 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (-g‘𝑝) = − ) |
25 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓) |
26 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑃 → (.r‘𝑝) = (.r‘𝑃)) |
27 | 26 | ad2antlr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (.r‘𝑝) = (.r‘𝑃)) |
28 | | q1pval.t |
. . . . . . . . . . . . . . . . 17
⊢ · =
(.r‘𝑃) |
29 | 27, 28 | eqtr4di 2797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (.r‘𝑝) = · ) |
30 | 29 | oveqd 7272 |
. . . . . . . . . . . . . . 15
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (𝑞(.r‘𝑝)𝑔) = (𝑞 · 𝑔)) |
31 | 24, 25, 30 | oveq123d 7276 |
. . . . . . . . . . . . . 14
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔)) = (𝑓 − (𝑞 · 𝑔))) |
32 | 20, 31 | fveq12d 6763 |
. . . . . . . . . . . . 13
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) = (𝐷‘(𝑓 − (𝑞 · 𝑔)))) |
33 | 20 | fveq1d 6758 |
. . . . . . . . . . . . 13
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (( deg1 ‘𝑟)‘𝑔) = (𝐷‘𝑔)) |
34 | 32, 33 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → ((( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔) ↔ (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔))) |
35 | 16, 34 | riotaeqbidv 7215 |
. . . . . . . . . . 11
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔))) |
36 | 16, 16, 35 | mpoeq123dv 7328 |
. . . . . . . . . 10
⊢ (((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
37 | 15, 36 | csbied 3866 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) → ⦋𝐵 / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
38 | 13, 37 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑝 = 𝑃) → ⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
39 | 9, 38 | csbied 3866 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ⦋𝑃 / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
40 | 7, 39 | eqtrd 2778 |
. . . . . 6
⊢ (𝑟 = 𝑅 →
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
41 | | df-q1p 25202 |
. . . . . 6
⊢
quot1p = (𝑟 ∈ V ↦
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)))) |
42 | 14, 14 | mpoex 7893 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔))) ∈ V |
43 | 40, 41, 42 | fvmpt 6857 |
. . . . 5
⊢ (𝑅 ∈ V →
(quot1p‘𝑅)
= (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
44 | 4, 43 | syl5eq 2791 |
. . . 4
⊢ (𝑅 ∈ V → 𝑄 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
45 | 3, 44 | syl 17 |
. . 3
⊢ (𝐺 ∈ 𝐵 → 𝑄 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
46 | 45 | adantl 481 |
. 2
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝑄 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)))) |
47 | | id 22 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) |
48 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑞 · 𝑔) = (𝑞 · 𝐺)) |
49 | 47, 48 | oveqan12d 7274 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 − (𝑞 · 𝑔)) = (𝐹 − (𝑞 · 𝐺))) |
50 | 49 | fveq2d 6760 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝐷‘(𝑓 − (𝑞 · 𝑔))) = (𝐷‘(𝐹 − (𝑞 · 𝐺)))) |
51 | | fveq2 6756 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝐷‘𝑔) = (𝐷‘𝐺)) |
52 | 51 | adantl 481 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝐷‘𝑔) = (𝐷‘𝐺)) |
53 | 50, 52 | breq12d 5083 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔) ↔ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
54 | 53 | riotabidv 7214 |
. . 3
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
55 | 54 | adantl 481 |
. 2
⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (℩𝑞 ∈ 𝐵 (𝐷‘(𝑓 − (𝑞 · 𝑔))) < (𝐷‘𝑔)) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
56 | | simpl 482 |
. 2
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
57 | | simpr 484 |
. 2
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
58 | | riotaex 7216 |
. . 3
⊢
(℩𝑞
∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ∈ V |
59 | 58 | a1i 11 |
. 2
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ∈ V) |
60 | 46, 55, 56, 57, 59 | ovmpod 7403 |
1
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |