![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1divalg | Structured version Visualization version GIF version |
Description: The division algorithm for univariate polynomials over a ring. For polynomials πΉ, πΊ such that πΊ β 0 and the leading coefficient of πΊ is a unit, there are unique polynomials π and π = πΉ β (πΊ Β· π) such that the degree of π is less than the degree of πΊ. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1divalg.p | β’ π = (Poly1βπ ) |
ply1divalg.d | β’ π· = ( deg1 βπ ) |
ply1divalg.b | β’ π΅ = (Baseβπ) |
ply1divalg.m | β’ β = (-gβπ) |
ply1divalg.z | β’ 0 = (0gβπ) |
ply1divalg.t | β’ β = (.rβπ) |
ply1divalg.r1 | β’ (π β π β Ring) |
ply1divalg.f | β’ (π β πΉ β π΅) |
ply1divalg.g1 | β’ (π β πΊ β π΅) |
ply1divalg.g2 | β’ (π β πΊ β 0 ) |
ply1divalg.g3 | β’ (π β ((coe1βπΊ)β(π·βπΊ)) β π) |
ply1divalg.u | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
ply1divalg | β’ (π β β!π β π΅ (π·β(πΉ β (πΊ β π))) < (π·βπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1divalg.p | . . 3 β’ π = (Poly1βπ ) | |
2 | ply1divalg.d | . . 3 β’ π· = ( deg1 βπ ) | |
3 | ply1divalg.b | . . 3 β’ π΅ = (Baseβπ) | |
4 | ply1divalg.m | . . 3 β’ β = (-gβπ) | |
5 | ply1divalg.z | . . 3 β’ 0 = (0gβπ) | |
6 | ply1divalg.t | . . 3 β’ β = (.rβπ) | |
7 | ply1divalg.r1 | . . 3 β’ (π β π β Ring) | |
8 | ply1divalg.f | . . 3 β’ (π β πΉ β π΅) | |
9 | ply1divalg.g1 | . . 3 β’ (π β πΊ β π΅) | |
10 | ply1divalg.g2 | . . 3 β’ (π β πΊ β 0 ) | |
11 | eqid 2731 | . . 3 β’ (1rβπ ) = (1rβπ ) | |
12 | eqid 2731 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
13 | eqid 2731 | . . 3 β’ (.rβπ ) = (.rβπ ) | |
14 | ply1divalg.g3 | . . . 4 β’ (π β ((coe1βπΊ)β(π·βπΊ)) β π) | |
15 | ply1divalg.u | . . . . 5 β’ π = (Unitβπ ) | |
16 | eqid 2731 | . . . . 5 β’ (invrβπ ) = (invrβπ ) | |
17 | 15, 16, 12 | ringinvcl 20284 | . . . 4 β’ ((π β Ring β§ ((coe1βπΊ)β(π·βπΊ)) β π) β ((invrβπ )β((coe1βπΊ)β(π·βπΊ))) β (Baseβπ )) |
18 | 7, 14, 17 | syl2anc 583 | . . 3 β’ (π β ((invrβπ )β((coe1βπΊ)β(π·βπΊ))) β (Baseβπ )) |
19 | 15, 16, 13, 11 | unitrinv 20286 | . . . 4 β’ ((π β Ring β§ ((coe1βπΊ)β(π·βπΊ)) β π) β (((coe1βπΊ)β(π·βπΊ))(.rβπ )((invrβπ )β((coe1βπΊ)β(π·βπΊ)))) = (1rβπ )) |
20 | 7, 14, 19 | syl2anc 583 | . . 3 β’ (π β (((coe1βπΊ)β(π·βπΊ))(.rβπ )((invrβπ )β((coe1βπΊ)β(π·βπΊ)))) = (1rβπ )) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20 | ply1divex 25887 | . 2 β’ (π β βπ β π΅ (π·β(πΉ β (πΊ β π))) < (π·βπΊ)) |
22 | eqid 2731 | . . . . . 6 β’ (RLRegβπ ) = (RLRegβπ ) | |
23 | 22, 15 | unitrrg 21110 | . . . . 5 β’ (π β Ring β π β (RLRegβπ )) |
24 | 7, 23 | syl 17 | . . . 4 β’ (π β π β (RLRegβπ )) |
25 | 24, 14 | sseldd 3984 | . . 3 β’ (π β ((coe1βπΊ)β(π·βπΊ)) β (RLRegβπ )) |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22 | ply1divmo 25886 | . 2 β’ (π β β*π β π΅ (π·β(πΉ β (πΊ β π))) < (π·βπΊ)) |
27 | reu5 3377 | . 2 β’ (β!π β π΅ (π·β(πΉ β (πΊ β π))) < (π·βπΊ) β (βπ β π΅ (π·β(πΉ β (πΊ β π))) < (π·βπΊ) β§ β*π β π΅ (π·β(πΉ β (πΊ β π))) < (π·βπΊ))) | |
28 | 21, 26, 27 | sylanbrc 582 | 1 β’ (π β β!π β π΅ (π·β(πΉ β (πΊ β π))) < (π·βπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 β!wreu 3373 β*wrmo 3374 β wss 3949 class class class wbr 5149 βcfv 6544 (class class class)co 7412 < clt 11253 Basecbs 17149 .rcmulr 17203 0gc0g 17390 -gcsg 18858 1rcur 20076 Ringcrg 20128 Unitcui 20247 invrcinvr 20279 RLRegcrlreg 21096 Poly1cpl1 21921 coe1cco1 21922 deg1 cdg1 25802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-ofr 7674 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-subrng 20435 df-subrg 20460 df-lmod 20617 df-lss 20688 df-rlreg 21100 df-cnfld 21146 df-psr 21682 df-mvr 21683 df-mpl 21684 df-opsr 21686 df-psr1 21924 df-vr1 21925 df-ply1 21926 df-coe1 21927 df-mdeg 25803 df-deg1 25804 |
This theorem is referenced by: ply1divalg2 25889 |
Copyright terms: Public domain | W3C validator |