Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1divalg | Structured version Visualization version GIF version |
Description: The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1divalg.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1divalg.m | ⊢ − = (-g‘𝑃) |
ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
ply1divalg | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1divalg.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1divalg.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | ply1divalg.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
4 | ply1divalg.m | . . 3 ⊢ − = (-g‘𝑃) | |
5 | ply1divalg.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
6 | ply1divalg.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
7 | ply1divalg.r1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
10 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
11 | eqid 2740 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
12 | eqid 2740 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | eqid 2740 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | ply1divalg.g3 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
15 | ply1divalg.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
16 | eqid 2740 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
17 | 15, 16, 12 | ringinvcl 19929 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) → ((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺))) ∈ (Base‘𝑅)) |
18 | 7, 14, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺))) ∈ (Base‘𝑅)) |
19 | 15, 16, 13, 11 | unitrinv 19931 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) → (((coe1‘𝐺)‘(𝐷‘𝐺))(.r‘𝑅)((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺)))) = (1r‘𝑅)) |
20 | 7, 14, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺))(.r‘𝑅)((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺)))) = (1r‘𝑅)) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20 | ply1divex 25312 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
22 | eqid 2740 | . . . . . 6 ⊢ (RLReg‘𝑅) = (RLReg‘𝑅) | |
23 | 22, 15 | unitrrg 20575 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (RLReg‘𝑅)) |
24 | 7, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ (RLReg‘𝑅)) |
25 | 24, 14 | sseldd 3927 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (RLReg‘𝑅)) |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22 | ply1divmo 25311 | . 2 ⊢ (𝜑 → ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
27 | reu5 3360 | . 2 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺) ↔ (∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺) ∧ ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺))) | |
28 | 21, 26, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 ∃!wreu 3068 ∃*wrmo 3069 ⊆ wss 3892 class class class wbr 5079 ‘cfv 6432 (class class class)co 7272 < clt 11020 Basecbs 16923 .rcmulr 16974 0gc0g 17161 -gcsg 18590 1rcur 19748 Ringcrg 19794 Unitcui 19892 invrcinvr 19924 RLRegcrlreg 20561 Poly1cpl1 21359 coe1cco1 21360 deg1 cdg1 25227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 ax-addf 10961 ax-mulf 10962 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-of 7528 df-ofr 7529 df-om 7708 df-1st 7825 df-2nd 7826 df-supp 7970 df-tpos 8034 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-map 8609 df-pm 8610 df-ixp 8678 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fsupp 9117 df-sup 9189 df-oi 9257 df-card 9708 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-fz 13251 df-fzo 13394 df-seq 13733 df-hash 14056 df-struct 16859 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-starv 16988 df-sca 16989 df-vsca 16990 df-tset 16992 df-ple 16993 df-ds 16995 df-unif 16996 df-0g 17163 df-gsum 17164 df-mre 17306 df-mrc 17307 df-acs 17309 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-mhm 18441 df-submnd 18442 df-grp 18591 df-minusg 18592 df-sbg 18593 df-mulg 18712 df-subg 18763 df-ghm 18843 df-cntz 18934 df-cmn 19399 df-abl 19400 df-mgp 19732 df-ur 19749 df-ring 19796 df-cring 19797 df-oppr 19873 df-dvdsr 19894 df-unit 19895 df-invr 19925 df-subrg 20033 df-lmod 20136 df-lss 20205 df-rlreg 20565 df-cnfld 20609 df-psr 21123 df-mvr 21124 df-mpl 21125 df-opsr 21127 df-psr1 21362 df-vr1 21363 df-ply1 21364 df-coe1 21365 df-mdeg 25228 df-deg1 25229 |
This theorem is referenced by: ply1divalg2 25314 |
Copyright terms: Public domain | W3C validator |