| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1divalg | Structured version Visualization version GIF version | ||
| Description: The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1divalg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
| ply1divalg.m | ⊢ − = (-g‘𝑃) |
| ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
| ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
| ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
| ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
| ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| ply1divalg | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1divalg.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | ply1divalg.d | . . 3 ⊢ 𝐷 = (deg1‘𝑅) | |
| 3 | ply1divalg.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | ply1divalg.m | . . 3 ⊢ − = (-g‘𝑃) | |
| 5 | ply1divalg.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
| 6 | ply1divalg.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
| 7 | ply1divalg.r1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 9 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 10 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
| 11 | eqid 2733 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 12 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 14 | ply1divalg.g3 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
| 15 | ply1divalg.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 16 | eqid 2733 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 17 | 15, 16, 12 | ringinvcl 20320 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) → ((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺))) ∈ (Base‘𝑅)) |
| 18 | 7, 14, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺))) ∈ (Base‘𝑅)) |
| 19 | 15, 16, 13, 11 | unitrinv 20322 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) → (((coe1‘𝐺)‘(𝐷‘𝐺))(.r‘𝑅)((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺)))) = (1r‘𝑅)) |
| 20 | 7, 14, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺))(.r‘𝑅)((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺)))) = (1r‘𝑅)) |
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20 | ply1divex 26079 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
| 22 | eqid 2733 | . . . . . 6 ⊢ (RLReg‘𝑅) = (RLReg‘𝑅) | |
| 23 | 22, 15 | unitrrg 20628 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (RLReg‘𝑅)) |
| 24 | 7, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ (RLReg‘𝑅)) |
| 25 | 24, 14 | sseldd 3932 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (RLReg‘𝑅)) |
| 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22 | ply1divmo 26078 | . 2 ⊢ (𝜑 → ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
| 27 | reu5 3350 | . 2 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺) ↔ (∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺) ∧ ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺))) | |
| 28 | 21, 26, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∃wrex 3058 ∃!wreu 3346 ∃*wrmo 3347 ⊆ wss 3899 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 < clt 11156 Basecbs 17130 .rcmulr 17172 0gc0g 17353 -gcsg 18858 1rcur 20109 Ringcrg 20161 Unitcui 20283 invrcinvr 20315 RLRegcrlreg 20616 Poly1cpl1 22099 coe1cco1 22100 deg1cdg1 25996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-sup 9336 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-fzo 13565 df-seq 13919 df-hash 14248 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-0g 17355 df-gsum 17356 df-prds 17361 df-pws 17363 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-ghm 19135 df-cntz 19239 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-subrng 20471 df-subrg 20495 df-rlreg 20619 df-lmod 20805 df-lss 20875 df-cnfld 21302 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-mdeg 25997 df-deg1 25998 |
| This theorem is referenced by: ply1divalg2 26081 |
| Copyright terms: Public domain | W3C validator |