Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1divalg | Structured version Visualization version GIF version |
Description: The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1divalg.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1divalg.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
ply1divalg.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1divalg.m | ⊢ − = (-g‘𝑃) |
ply1divalg.z | ⊢ 0 = (0g‘𝑃) |
ply1divalg.t | ⊢ ∙ = (.r‘𝑃) |
ply1divalg.r1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ply1divalg.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
ply1divalg.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
ply1divalg.g2 | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
ply1divalg.g3 | ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) |
ply1divalg.u | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
ply1divalg | ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1divalg.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1divalg.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | ply1divalg.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
4 | ply1divalg.m | . . 3 ⊢ − = (-g‘𝑃) | |
5 | ply1divalg.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
6 | ply1divalg.t | . . 3 ⊢ ∙ = (.r‘𝑃) | |
7 | ply1divalg.r1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | ply1divalg.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | ply1divalg.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
10 | ply1divalg.g2 | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
11 | eqid 2738 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
12 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | ply1divalg.g3 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) | |
15 | ply1divalg.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
16 | eqid 2738 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
17 | 15, 16, 12 | ringinvcl 19918 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) → ((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺))) ∈ (Base‘𝑅)) |
18 | 7, 14, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺))) ∈ (Base‘𝑅)) |
19 | 15, 16, 13, 11 | unitrinv 19920 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) → (((coe1‘𝐺)‘(𝐷‘𝐺))(.r‘𝑅)((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺)))) = (1r‘𝑅)) |
20 | 7, 14, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺))(.r‘𝑅)((invr‘𝑅)‘((coe1‘𝐺)‘(𝐷‘𝐺)))) = (1r‘𝑅)) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20 | ply1divex 25301 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
22 | eqid 2738 | . . . . . 6 ⊢ (RLReg‘𝑅) = (RLReg‘𝑅) | |
23 | 22, 15 | unitrrg 20564 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (RLReg‘𝑅)) |
24 | 7, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ (RLReg‘𝑅)) |
25 | 24, 14 | sseldd 3922 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (RLReg‘𝑅)) |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22 | ply1divmo 25300 | . 2 ⊢ (𝜑 → ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
27 | reu5 3361 | . 2 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺) ↔ (∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺) ∧ ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺))) | |
28 | 21, 26, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∃!wreu 3066 ∃*wrmo 3067 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 < clt 11009 Basecbs 16912 .rcmulr 16963 0gc0g 17150 -gcsg 18579 1rcur 19737 Ringcrg 19783 Unitcui 19881 invrcinvr 19913 RLRegcrlreg 20550 Poly1cpl1 21348 coe1cco1 21349 deg1 cdg1 25216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-subrg 20022 df-lmod 20125 df-lss 20194 df-rlreg 20554 df-cnfld 20598 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-coe1 21354 df-mdeg 25217 df-deg1 25218 |
This theorem is referenced by: ply1divalg2 25303 |
Copyright terms: Public domain | W3C validator |