Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg Structured version   Visualization version   GIF version

Theorem ply1divalg 24297
 Description: The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg
StepHypRef Expression
1 ply1divalg.p . . 3 𝑃 = (Poly1𝑅)
2 ply1divalg.d . . 3 𝐷 = ( deg1𝑅)
3 ply1divalg.b . . 3 𝐵 = (Base‘𝑃)
4 ply1divalg.m . . 3 = (-g𝑃)
5 ply1divalg.z . . 3 0 = (0g𝑃)
6 ply1divalg.t . . 3 = (.r𝑃)
7 ply1divalg.r1 . . 3 (𝜑𝑅 ∈ Ring)
8 ply1divalg.f . . 3 (𝜑𝐹𝐵)
9 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
10 ply1divalg.g2 . . 3 (𝜑𝐺0 )
11 eqid 2826 . . 3 (1r𝑅) = (1r𝑅)
12 eqid 2826 . . 3 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2826 . . 3 (.r𝑅) = (.r𝑅)
14 ply1divalg.g3 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
15 ply1divalg.u . . . . 5 𝑈 = (Unit‘𝑅)
16 eqid 2826 . . . . 5 (invr𝑅) = (invr𝑅)
1715, 16, 12ringinvcl 19031 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
187, 14, 17syl2anc 581 . . 3 (𝜑 → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
1915, 16, 13, 11unitrinv 19033 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
207, 14, 19syl2anc 581 . . 3 (𝜑 → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20ply1divex 24296 . 2 (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
22 eqid 2826 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
2322, 15unitrrg 19655 . . . . 5 (𝑅 ∈ Ring → 𝑈 ⊆ (RLReg‘𝑅))
247, 23syl 17 . . . 4 (𝜑𝑈 ⊆ (RLReg‘𝑅))
2524, 14sseldd 3829 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22ply1divmo 24295 . 2 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
27 reu5 3372 . 2 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
2821, 26, 27sylanbrc 580 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1658   ∈ wcel 2166   ≠ wne 3000  ∃wrex 3119  ∃!wreu 3120  ∃*wrmo 3121   ⊆ wss 3799   class class class wbr 4874  ‘cfv 6124  (class class class)co 6906   < clt 10392  Basecbs 16223  .rcmulr 16307  0gc0g 16454  -gcsg 17779  1rcur 18856  Ringcrg 18902  Unitcui 18994  invrcinvr 19026  RLRegcrlreg 19641  Poly1cpl1 19908  coe1cco1 19909   deg1 cdg1 24214 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-ofr 7159  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-tpos 7618  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-sup 8618  df-oi 8685  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-fz 12621  df-fzo 12762  df-seq 13097  df-hash 13412  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-starv 16321  df-sca 16322  df-vsca 16323  df-tset 16325  df-ple 16326  df-ds 16328  df-unif 16329  df-0g 16456  df-gsum 16457  df-mre 16600  df-mrc 16601  df-acs 16603  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-mhm 17689  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-mulg 17896  df-subg 17943  df-ghm 18010  df-cntz 18101  df-cmn 18549  df-abl 18550  df-mgp 18845  df-ur 18857  df-ring 18904  df-cring 18905  df-oppr 18978  df-dvdsr 18996  df-unit 18997  df-invr 19027  df-subrg 19135  df-lmod 19222  df-lss 19290  df-rlreg 19645  df-psr 19718  df-mvr 19719  df-mpl 19720  df-opsr 19722  df-psr1 19911  df-vr1 19912  df-ply1 19913  df-coe1 19914  df-cnfld 20108  df-mdeg 24215  df-deg1 24216 This theorem is referenced by:  ply1divalg2  24298
 Copyright terms: Public domain W3C validator