MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg Structured version   Visualization version   GIF version

Theorem ply1divalg 26063
Description: The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = (deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg
StepHypRef Expression
1 ply1divalg.p . . 3 𝑃 = (Poly1𝑅)
2 ply1divalg.d . . 3 𝐷 = (deg1𝑅)
3 ply1divalg.b . . 3 𝐵 = (Base‘𝑃)
4 ply1divalg.m . . 3 = (-g𝑃)
5 ply1divalg.z . . 3 0 = (0g𝑃)
6 ply1divalg.t . . 3 = (.r𝑃)
7 ply1divalg.r1 . . 3 (𝜑𝑅 ∈ Ring)
8 ply1divalg.f . . 3 (𝜑𝐹𝐵)
9 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
10 ply1divalg.g2 . . 3 (𝜑𝐺0 )
11 eqid 2730 . . 3 (1r𝑅) = (1r𝑅)
12 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2730 . . 3 (.r𝑅) = (.r𝑅)
14 ply1divalg.g3 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
15 ply1divalg.u . . . . 5 𝑈 = (Unit‘𝑅)
16 eqid 2730 . . . . 5 (invr𝑅) = (invr𝑅)
1715, 16, 12ringinvcl 20303 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
187, 14, 17syl2anc 584 . . 3 (𝜑 → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
1915, 16, 13, 11unitrinv 20305 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
207, 14, 19syl2anc 584 . . 3 (𝜑 → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20ply1divex 26062 . 2 (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
22 eqid 2730 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
2322, 15unitrrg 20611 . . . . 5 (𝑅 ∈ Ring → 𝑈 ⊆ (RLReg‘𝑅))
247, 23syl 17 . . . 4 (𝜑𝑈 ⊆ (RLReg‘𝑅))
2524, 14sseldd 3933 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22ply1divmo 26061 . 2 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
27 reu5 3346 . 2 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
2821, 26, 27sylanbrc 583 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wne 2926  wrex 3054  ∃!wreu 3342  ∃*wrmo 3343  wss 3900   class class class wbr 5089  cfv 6477  (class class class)co 7341   < clt 11138  Basecbs 17112  .rcmulr 17154  0gc0g 17335  -gcsg 18840  1rcur 20092  Ringcrg 20144  Unitcui 20266  invrcinvr 20298  RLRegcrlreg 20599  Poly1cpl1 22082  coe1cco1 22083  deg1cdg1 25979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-subrng 20454  df-subrg 20478  df-rlreg 20602  df-lmod 20788  df-lss 20858  df-cnfld 21285  df-psr 21839  df-mvr 21840  df-mpl 21841  df-opsr 21843  df-psr1 22085  df-vr1 22086  df-ply1 22087  df-coe1 22088  df-mdeg 25980  df-deg1 25981
This theorem is referenced by:  ply1divalg2  26064
  Copyright terms: Public domain W3C validator