|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-redundp | Structured version Visualization version GIF version | ||
| Description: Define the redundancy operator for propositions, cf. df-redund 38625. (Contributed by Peter Mazsa, 23-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| df-redundp | ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | wredundp 38204 | . 2 wff redund (𝜑, 𝜓, 𝜒) | 
| 5 | 1, 2 | wi 4 | . . 3 wff (𝜑 → 𝜓) | 
| 6 | 1, 3 | wa 395 | . . . 4 wff (𝜑 ∧ 𝜒) | 
| 7 | 2, 3 | wa 395 | . . . 4 wff (𝜓 ∧ 𝜒) | 
| 8 | 6, 7 | wb 206 | . . 3 wff ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) | 
| 9 | 5, 8 | wa 395 | . 2 wff ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) | 
| 10 | 4, 9 | wb 206 | 1 wff ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: redundpim3 38631 redundpbi1 38632 refrelredund4 38636 | 
| Copyright terms: Public domain | W3C validator |