Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-redundp | Structured version Visualization version GIF version |
Description: Define the redundancy operator for propositions, cf. df-redund 36716. (Contributed by Peter Mazsa, 23-Oct-2022.) |
Ref | Expression |
---|---|
df-redundp | ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | wredundp 36334 | . 2 wff redund (𝜑, 𝜓, 𝜒) |
5 | 1, 2 | wi 4 | . . 3 wff (𝜑 → 𝜓) |
6 | 1, 3 | wa 395 | . . . 4 wff (𝜑 ∧ 𝜒) |
7 | 2, 3 | wa 395 | . . . 4 wff (𝜓 ∧ 𝜒) |
8 | 6, 7 | wb 205 | . . 3 wff ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
9 | 5, 8 | wa 395 | . 2 wff ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) |
10 | 4, 9 | wb 205 | 1 wff ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) |
Colors of variables: wff setvar class |
This definition is referenced by: redundpim3 36722 redundpbi1 36723 refrelredund4 36727 |
Copyright terms: Public domain | W3C validator |