Proof of Theorem refrelredund4
Step | Hyp | Ref
| Expression |
1 | | inxpssres 5605 |
. . . . 5
⊢ ( I ∩
(dom 𝑅 × ran 𝑅)) ⊆ ( I ↾ dom 𝑅) |
2 | | sstr2 3932 |
. . . . 5
⊢ (( I
∩ (dom 𝑅 × ran
𝑅)) ⊆ ( I ↾ dom
𝑅) → (( I ↾ dom
𝑅) ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅)) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ (( I
↾ dom 𝑅) ⊆
𝑅 → ( I ∩ (dom
𝑅 × ran 𝑅)) ⊆ 𝑅) |
4 | 3 | anim1i 614 |
. . 3
⊢ ((( I
↾ dom 𝑅) ⊆
𝑅 ∧ Rel 𝑅) → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) |
5 | | dfrefrel2 36612 |
. . 3
⊢ ( RefRel
𝑅 ↔ (( I ∩ (dom
𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) |
6 | 4, 5 | sylibr 233 |
. 2
⊢ ((( I
↾ dom 𝑅) ⊆
𝑅 ∧ Rel 𝑅) → RefRel 𝑅) |
7 | | an12 641 |
. . 3
⊢ (((( I
↾ dom 𝑅) ⊆
𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅))) |
8 | | anandir 673 |
. . . . 5
⊢ (((( I
↾ dom 𝑅) ⊆
𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) |
9 | | refsymrel2 36660 |
. . . . 5
⊢ (( RefRel
𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) |
10 | | dfsymrel2 36642 |
. . . . . 6
⊢ ( SymRel
𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) |
11 | 10 | anbi2i 622 |
. . . . 5
⊢ (((( I
↾ dom 𝑅) ⊆
𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) |
12 | 8, 9, 11 | 3bitr4i 302 |
. . . 4
⊢ (( RefRel
𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅)) |
13 | 12 | anbi2i 622 |
. . 3
⊢ (( RefRel
𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅))) |
14 | 7, 13 | bitr4i 277 |
. 2
⊢ (((( I
↾ dom 𝑅) ⊆
𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅))) |
15 | | df-redundp 36717 |
. 2
⊢ ( redund
((( I ↾ dom 𝑅)
⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → RefRel 𝑅) ∧ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅))))) |
16 | 6, 14, 15 | mpbir2an 707 |
1
⊢ redund
((( I ↾ dom 𝑅)
⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) |