Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund4 Structured version   Visualization version   GIF version

Theorem refrelredund4 38658
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 38538) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelredund4 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))

Proof of Theorem refrelredund4
StepHypRef Expression
1 inxpssres 5676 . . . . 5 ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ↾ dom 𝑅)
2 sstr2 3970 . . . . 5 (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ↾ dom 𝑅) → (( I ↾ dom 𝑅) ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅))
31, 2ax-mp 5 . . . 4 (( I ↾ dom 𝑅) ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅)
43anim1i 615 . . 3 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
5 dfrefrel2 38538 . . 3 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
64, 5sylibr 234 . 2 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → RefRel 𝑅)
7 an12 645 . . 3 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅)))
8 anandir 677 . . . . 5 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
9 refsymrel2 38590 . . . . 5 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
10 dfsymrel2 38572 . . . . . 6 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
1110anbi2i 623 . . . . 5 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
128, 9, 113bitr4i 303 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅))
1312anbi2i 623 . . 3 (( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅)))
147, 13bitr4i 278 . 2 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)))
15 df-redundp 38648 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → RefRel 𝑅) ∧ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)))))
166, 14, 15mpbir2an 711 1 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  cin 3930  wss 3931   I cid 5552   × cxp 5657  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  Rel wrel 5664   RefRel wrefrel 38210   SymRel wsymrel 38216   redund wredundp 38226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-refrel 38535  df-symrel 38567  df-redundp 38648
This theorem is referenced by:  refrelredund2  38659
  Copyright terms: Public domain W3C validator