Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund4 Structured version   Visualization version   GIF version

Theorem refrelredund4 35903
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 35788) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelredund4 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))

Proof of Theorem refrelredund4
StepHypRef Expression
1 inxpssres 5565 . . . . 5 ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ↾ dom 𝑅)
2 sstr2 3967 . . . . 5 (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ↾ dom 𝑅) → (( I ↾ dom 𝑅) ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅))
31, 2ax-mp 5 . . . 4 (( I ↾ dom 𝑅) ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅)
43anim1i 616 . . 3 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
5 dfrefrel2 35788 . . 3 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
64, 5sylibr 236 . 2 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → RefRel 𝑅)
7 an12 643 . . 3 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅)))
8 anandir 675 . . . . 5 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
9 refsymrel2 35836 . . . . 5 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
10 dfsymrel2 35818 . . . . . 6 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
1110anbi2i 624 . . . . 5 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
128, 9, 113bitr4i 305 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅))
1312anbi2i 624 . . 3 (( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅)))
147, 13bitr4i 280 . 2 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)))
15 df-redundp 35893 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → RefRel 𝑅) ∧ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)))))
166, 14, 15mpbir2an 709 1 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  cin 3928  wss 3929   I cid 5452   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cres 5550  Rel wrel 5553   RefRel wrefrel 35492   SymRel wsymrel 35498   redund wredundp 35508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-br 5060  df-opab 5122  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-refrel 35785  df-symrel 35813  df-redundp 35893
This theorem is referenced by:  refrelredund2  35904
  Copyright terms: Public domain W3C validator