Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelredund4 Structured version   Visualization version   GIF version

Theorem refrelredund4 36727
Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 36612) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.)
Assertion
Ref Expression
refrelredund4 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))

Proof of Theorem refrelredund4
StepHypRef Expression
1 inxpssres 5605 . . . . 5 ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ↾ dom 𝑅)
2 sstr2 3932 . . . . 5 (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ↾ dom 𝑅) → (( I ↾ dom 𝑅) ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅))
31, 2ax-mp 5 . . . 4 (( I ↾ dom 𝑅) ⊆ 𝑅 → ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅)
43anim1i 614 . . 3 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
5 dfrefrel2 36612 . . 3 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
64, 5sylibr 233 . 2 ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → RefRel 𝑅)
7 an12 641 . . 3 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅)))
8 anandir 673 . . . . 5 (((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
9 refsymrel2 36660 . . . . 5 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅𝑅𝑅) ∧ Rel 𝑅))
10 dfsymrel2 36642 . . . . . 6 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
1110anbi2i 622 . . . . 5 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ (𝑅𝑅 ∧ Rel 𝑅)))
128, 9, 113bitr4i 302 . . . 4 (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅))
1312anbi2i 622 . . 3 (( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ SymRel 𝑅)))
147, 13bitr4i 277 . 2 (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)))
15 df-redundp 36717 . 2 ( redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) → RefRel 𝑅) ∧ (((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅) ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)) ↔ ( RefRel 𝑅 ∧ ( RefRel 𝑅 ∧ SymRel 𝑅)))))
166, 14, 15mpbir2an 707 1 redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  cin 3890  wss 3891   I cid 5487   × cxp 5586  ccnv 5587  dom cdm 5588  ran crn 5589  cres 5590  Rel wrel 5593   RefRel wrefrel 36318   SymRel wsymrel 36324   redund wredundp 36334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-refrel 36609  df-symrel 36637  df-redundp 36717
This theorem is referenced by:  refrelredund2  36728
  Copyright terms: Public domain W3C validator