| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > redundpim3 | Structured version Visualization version GIF version | ||
| Description: Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| redundpim3.1 | ⊢ (𝜃 → 𝜒) |
| Ref | Expression |
|---|---|
| redundpim3 | ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi1 633 | . . . 4 ⊢ (((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) → (((𝜑 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | |
| 2 | redundpim3.1 | . . . . . 6 ⊢ (𝜃 → 𝜒) | |
| 3 | 2 | pm4.71ri 560 | . . . . 5 ⊢ (𝜃 ↔ (𝜒 ∧ 𝜃)) |
| 4 | 3 | bianass 642 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜃)) |
| 5 | 3 | bianass 642 | . . . 4 ⊢ ((𝜓 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| 6 | 1, 4, 5 | 3bitr4g 314 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜃) ↔ (𝜓 ∧ 𝜃))) |
| 7 | 6 | anim2i 617 | . 2 ⊢ (((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) → ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜃) ↔ (𝜓 ∧ 𝜃)))) |
| 8 | df-redundp 38627 | . 2 ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | |
| 9 | df-redundp 38627 | . 2 ⊢ ( redund (𝜑, 𝜓, 𝜃) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜃) ↔ (𝜓 ∧ 𝜃)))) | |
| 10 | 7, 8, 9 | 3imtr4i 292 | 1 ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 redund wredundp 38205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-redundp 38627 |
| This theorem is referenced by: refrelredund2 38638 |
| Copyright terms: Public domain | W3C validator |