Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redundpbi1 Structured version   Visualization version   GIF version

Theorem redundpbi1 36744
Description: Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.)
Hypothesis
Ref Expression
redundpbi1.1 (𝜑𝜃)
Assertion
Ref Expression
redundpbi1 ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒))

Proof of Theorem redundpbi1
StepHypRef Expression
1 redundpbi1.1 . . . 4 (𝜑𝜃)
21imbi1i 350 . . 3 ((𝜑𝜓) ↔ (𝜃𝜓))
31anbi1i 624 . . . 4 ((𝜑𝜒) ↔ (𝜃𝜒))
43bibi1i 339 . . 3 (((𝜑𝜒) ↔ (𝜓𝜒)) ↔ ((𝜃𝜒) ↔ (𝜓𝜒)))
52, 4anbi12i 627 . 2 (((𝜑𝜓) ∧ ((𝜑𝜒) ↔ (𝜓𝜒))) ↔ ((𝜃𝜓) ∧ ((𝜃𝜒) ↔ (𝜓𝜒))))
6 df-redundp 36738 . 2 ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ ((𝜑𝜒) ↔ (𝜓𝜒))))
7 df-redundp 36738 . 2 ( redund (𝜃, 𝜓, 𝜒) ↔ ((𝜃𝜓) ∧ ((𝜃𝜒) ↔ (𝜓𝜒))))
85, 6, 73bitr4i 303 1 ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   redund wredundp 36355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-redundp 36738
This theorem is referenced by:  refrelredund3  36750
  Copyright terms: Public domain W3C validator