| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > redundpbi1 | Structured version Visualization version GIF version | ||
| Description: Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| Ref | Expression |
|---|---|
| redundpbi1.1 | ⊢ (𝜑 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| redundpbi1 | ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redundpbi1.1 | . . . 4 ⊢ (𝜑 ↔ 𝜃) | |
| 2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (𝜃 → 𝜓)) |
| 3 | 1 | anbi1i 624 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
| 4 | 3 | bibi1i 338 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) ↔ ((𝜃 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) |
| 5 | 2, 4 | anbi12i 628 | . 2 ⊢ (((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) ↔ ((𝜃 → 𝜓) ∧ ((𝜃 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) |
| 6 | df-redundp 38567 | . 2 ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | |
| 7 | df-redundp 38567 | . 2 ⊢ ( redund (𝜃, 𝜓, 𝜒) ↔ ((𝜃 → 𝜓) ∧ ((𝜃 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 redund wredundp 38145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-redundp 38567 |
| This theorem is referenced by: refrelredund3 38579 |
| Copyright terms: Public domain | W3C validator |