| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-refrel | Structured version Visualization version GIF version | ||
| Description: Define the reflexive relation predicate. (Read: 𝑅 is a reflexive relation.) This is a surprising definition, see the comment of dfrefrel3 38517. Alternate definitions are dfrefrel2 38516 and dfrefrel3 38517. For sets, being an element of the class of reflexive relations (df-refrels 38512) is equivalent to satisfying the reflexive relation predicate, that is (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝑅 is a set, see elrefrelsrel 38521. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| df-refrel | ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | wrefrel 38188 | . 2 wff RefRel 𝑅 |
| 3 | cid 5577 | . . . . 5 class I | |
| 4 | 1 | cdm 5685 | . . . . . 6 class dom 𝑅 |
| 5 | 1 | crn 5686 | . . . . . 6 class ran 𝑅 |
| 6 | 4, 5 | cxp 5683 | . . . . 5 class (dom 𝑅 × ran 𝑅) |
| 7 | 3, 6 | cin 3950 | . . . 4 class ( I ∩ (dom 𝑅 × ran 𝑅)) |
| 8 | 1, 6 | cin 3950 | . . . 4 class (𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
| 9 | 7, 8 | wss 3951 | . . 3 wff ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
| 10 | 1 | wrel 5690 | . . 3 wff Rel 𝑅 |
| 11 | 9, 10 | wa 395 | . 2 wff (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) |
| 12 | 2, 11 | wb 206 | 1 wff ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfrefrel2 38516 refrelid 38523 |
| Copyright terms: Public domain | W3C validator |