![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrel3 | Structured version Visualization version GIF version |
Description: Alternate definition of
the reflexive relation predicate. A relation is
reflexive iff: for all elements on its domain and range, if an element
of its domain is the same as an element of its range, then there is the
relation between them.
Note that this is definitely not the definition we are accustomed to, like e.g. idref 7146 / idrefALT 6112 or df-reflexive 47891 ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥)). It turns out that the not-surprising definition which contains ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 needs symmetry as well, see refsymrels3 37522. Only when this symmetry condition holds, like in case of equivalence relations, see dfeqvrels3 37545, can we write the traditional form ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 for reflexive relations. For the special case with square Cartesian product when the two forms are equivalent see idinxpssinxp4 37275 where ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥). See also similar definition of the converse reflexive relations class dfcnvrefrel3 37487. (Contributed by Peter Mazsa, 8-Jul-2019.) |
Ref | Expression |
---|---|
dfrefrel3 | ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrel2 37471 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
2 | idinxpss 37267 | . . 3 ⊢ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦)) | |
3 | 2 | anbi1i 624 | . 2 ⊢ ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ Rel 𝑅)) |
4 | 1, 3 | bitri 274 | 1 ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wral 3061 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 I cid 5573 × cxp 5674 dom cdm 5676 ran crn 5677 Rel wrel 5681 RefRel wrefrel 37135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-refrel 37468 |
This theorem is referenced by: refsymrel3 37524 |
Copyright terms: Public domain | W3C validator |