| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-refrels | Structured version Visualization version GIF version | ||
| Description: Define the class of
reflexive relations. This is practically dfrefrels2 38514
(which reveals that RefRels can not include proper
classes like I
as is elements, see comments of dfrefrels2 38514).
Another alternative definition is dfrefrels3 38515. The element of this class and the reflexive relation predicate (df-refrel 38513) are the same, that is, (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝐴 is a set, see elrefrelsrel 38521. This definition is similar to the definitions of the classes of symmetric (df-symrels 38544) and transitive (df-trrels 38574) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-refrels | ⊢ RefRels = ( Refs ∩ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crefrels 38187 | . 2 class RefRels | |
| 2 | crefs 38186 | . . 3 class Refs | |
| 3 | crels 38184 | . . 3 class Rels | |
| 4 | 2, 3 | cin 3950 | . 2 class ( Refs ∩ Rels ) |
| 5 | 1, 4 | wceq 1540 | 1 wff RefRels = ( Refs ∩ Rels ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfrefrels2 38514 |
| Copyright terms: Public domain | W3C validator |