Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelid | Structured version Visualization version GIF version |
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
Ref | Expression |
---|---|
refrelid | ⊢ RefRel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . 2 ⊢ ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) | |
2 | reli 5736 | . 2 ⊢ Rel I | |
3 | df-refrel 36630 | . 2 ⊢ ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I )) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ RefRel I |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3886 ⊆ wss 3887 I cid 5488 × cxp 5587 dom cdm 5589 ran crn 5590 Rel wrel 5594 RefRel wrefrel 36339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-refrel 36630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |