Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelid Structured version   Visualization version   GIF version

Theorem refrelid 38482
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
refrelid RefRel I

Proof of Theorem refrelid
StepHypRef Expression
1 ssid 3986 . 2 ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I ))
2 reli 5816 . 2 Rel I
3 df-refrel 38472 . 2 ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I ))
41, 2, 3mpbir2an 711 1 RefRel I
Colors of variables: wff setvar class
Syntax hints:  cin 3930  wss 3931   I cid 5557   × cxp 5663  dom cdm 5665  ran crn 5666  Rel wrel 5670   RefRel wrefrel 38147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-ss 3948  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-refrel 38472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator