Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelid Structured version   Visualization version   GIF version

Theorem refrelid 38480
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
refrelid RefRel I

Proof of Theorem refrelid
StepHypRef Expression
1 ssid 4031 . 2 ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I ))
2 reli 5850 . 2 Rel I
3 df-refrel 38470 . 2 ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I ))
41, 2, 3mpbir2an 710 1 RefRel I
Colors of variables: wff setvar class
Syntax hints:  cin 3975  wss 3976   I cid 5592   × cxp 5698  dom cdm 5700  ran crn 5701  Rel wrel 5705   RefRel wrefrel 38143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-refrel 38470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator