![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelid | Structured version Visualization version GIF version |
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
Ref | Expression |
---|---|
refrelid | ⊢ RefRel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4021 | . 2 ⊢ ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) | |
2 | reli 5843 | . 2 ⊢ Rel I | |
3 | df-refrel 38508 | . 2 ⊢ ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I )) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ RefRel I |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3965 ⊆ wss 3966 I cid 5586 × cxp 5691 dom cdm 5693 ran crn 5694 Rel wrel 5698 RefRel wrefrel 38182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-ss 3983 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-refrel 38508 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |