Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelid Structured version   Visualization version   GIF version

Theorem refrelid 38558
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
refrelid RefRel I

Proof of Theorem refrelid
StepHypRef Expression
1 ssid 3957 . 2 ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I ))
2 reli 5766 . 2 Rel I
3 df-refrel 38548 . 2 ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I ))
41, 2, 3mpbir2an 711 1 RefRel I
Colors of variables: wff setvar class
Syntax hints:  cin 3901  wss 3902   I cid 5510   × cxp 5614  dom cdm 5616  ran crn 5617  Rel wrel 5621   RefRel wrefrel 38220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-refrel 38548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator