| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelid | Structured version Visualization version GIF version | ||
| Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| Ref | Expression |
|---|---|
| refrelid | ⊢ RefRel I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) | |
| 2 | reli 5770 | . 2 ⊢ Rel I | |
| 3 | df-refrel 38624 | . 2 ⊢ ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I )) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ RefRel I |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3897 ⊆ wss 3898 I cid 5513 × cxp 5617 dom cdm 5619 ran crn 5620 Rel wrel 5624 RefRel wrefrel 38248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-refrel 38624 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |