![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelid | Structured version Visualization version GIF version |
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
Ref | Expression |
---|---|
refrelid | ⊢ RefRel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3999 | . 2 ⊢ ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) | |
2 | reli 5819 | . 2 ⊢ Rel I | |
3 | df-refrel 37894 | . 2 ⊢ ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I )) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ RefRel I |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3942 ⊆ wss 3943 I cid 5566 × cxp 5667 dom cdm 5669 ran crn 5670 Rel wrel 5674 RefRel wrefrel 37561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ss 3960 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-refrel 37894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |