| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelid | Structured version Visualization version GIF version | ||
| Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| Ref | Expression |
|---|---|
| refrelid | ⊢ RefRel I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3960 | . 2 ⊢ ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) | |
| 2 | reli 5773 | . 2 ⊢ Rel I | |
| 3 | df-refrel 38488 | . 2 ⊢ ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I )) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ RefRel I |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3904 ⊆ wss 3905 I cid 5517 × cxp 5621 dom cdm 5623 ran crn 5624 Rel wrel 5628 RefRel wrefrel 38160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-refrel 38488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |