![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelid | Structured version Visualization version GIF version |
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
Ref | Expression |
---|---|
refrelid | ⊢ RefRel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) | |
2 | reli 5850 | . 2 ⊢ Rel I | |
3 | df-refrel 38470 | . 2 ⊢ ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I )) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ RefRel I |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3975 ⊆ wss 3976 I cid 5592 × cxp 5698 dom cdm 5700 ran crn 5701 Rel wrel 5705 RefRel wrefrel 38143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-refrel 38470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |