Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelid Structured version   Visualization version   GIF version

Theorem refrelid 38498
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
refrelid RefRel I

Proof of Theorem refrelid
StepHypRef Expression
1 ssid 3960 . 2 ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I ))
2 reli 5773 . 2 Rel I
3 df-refrel 38488 . 2 ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I ))
41, 2, 3mpbir2an 711 1 RefRel I
Colors of variables: wff setvar class
Syntax hints:  cin 3904  wss 3905   I cid 5517   × cxp 5621  dom cdm 5623  ran crn 5624  Rel wrel 5628   RefRel wrefrel 38160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-ss 3922  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-refrel 38488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator