Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelid Structured version   Visualization version   GIF version

Theorem refrelid 37380
Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
refrelid RefRel I

Proof of Theorem refrelid
StepHypRef Expression
1 ssid 4003 . 2 ( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I ))
2 reli 5824 . 2 Rel I
3 df-refrel 37370 . 2 ( RefRel I ↔ (( I ∩ (dom I × ran I )) ⊆ ( I ∩ (dom I × ran I )) ∧ Rel I ))
41, 2, 3mpbir2an 709 1 RefRel I
Colors of variables: wff setvar class
Syntax hints:  cin 3946  wss 3947   I cid 5572   × cxp 5673  dom cdm 5675  ran crn 5676  Rel wrel 5680   RefRel wrefrel 37037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-refrel 37370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator