Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrefrelsrel | Structured version Visualization version GIF version |
Description: For sets, being an element of the class of reflexive relations (df-refrels 36556) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
Ref | Expression |
---|---|
elrefrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel 36532 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
2 | 1 | anbi2d 628 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))) |
3 | elrefrels2 36562 | . 2 ⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | |
4 | dfrefrel2 36560 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 I cid 5479 × cxp 5578 dom cdm 5580 ran crn 5581 Rel wrel 5585 Rels crels 36262 RefRels crefrels 36265 RefRel wrefrel 36266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-rels 36530 df-ssr 36543 df-refs 36555 df-refrels 36556 df-refrel 36557 |
This theorem is referenced by: elrefsymrelsrel 36612 |
Copyright terms: Public domain | W3C validator |