Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrefrelsrel Structured version   Visualization version   GIF version

Theorem elrefrelsrel 38499
Description: For sets, being an element of the class of reflexive relations (df-refrels 38490) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
elrefrelsrel (𝑅𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅))

Proof of Theorem elrefrelsrel
StepHypRef Expression
1 elrelsrel 38466 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 630 . 2 (𝑅𝑉 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ) ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)))
3 elrefrels2 38497 . 2 (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅𝑅 ∈ Rels ))
4 dfrefrel2 38494 . 2 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
52, 3, 43bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cin 3904  wss 3905   I cid 5517   × cxp 5621  dom cdm 5623  ran crn 5624  Rel wrel 5628   Rels crels 38159   RefRels crefrels 38162   RefRel wrefrel 38163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-rels 38464  df-ssr 38477  df-refs 38489  df-refrels 38490  df-refrel 38491
This theorem is referenced by:  elrefsymrelsrel  38550
  Copyright terms: Public domain W3C validator