Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrefrels2 Structured version   Visualization version   GIF version

Theorem dfrefrels2 38549
Description: Alternate definition of the class of reflexive relations. This is a 0-ary class constant, which is recommended for definitions (see the 1. Guideline at https://us.metamath.org/ileuni/mathbox.html). Proper classes (like I, see iprc 7841) are not elements of this (or any) class: if a class is an element of another class, it is not a proper class but a set, see elex 3457. So if we use 0-ary constant classes as our main definitions, they are valid only for sets, not for proper classes. For proper classes we use predicate-type definitions like df-refrel 38548. See also the comment of df-rels 38521.

Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 38549, it keeps restriction of I: this is why the very similar definitions df-refs 38546, df-syms 38578 and df-trs 38608 diverge when we switch from (general) sets to relations in dfrefrels2 38549, dfsymrels2 38581 and dftrrels2 38611. (Contributed by Peter Mazsa, 20-Jul-2019.)

Assertion
Ref Expression
dfrefrels2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}

Proof of Theorem dfrefrels2
StepHypRef Expression
1 df-refrels 38547 . 2 RefRels = ( Refs ∩ Rels )
2 df-refs 38546 . 2 Refs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 inex1g 5257 . . . . 5 (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
43elv 3441 . . . 4 (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V
5 brssr 38537 . . . 4 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))))
64, 5ax-mp 5 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))
7 elrels6 38526 . . . . . 6 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
87elv 3441 . . . . 5 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
98biimpi 216 . . . 4 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
109sseq2d 3967 . . 3 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
116, 10bitrid 283 . 2 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
121, 2, 11abeqinbi 38287 1 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cin 3901  wss 3902   class class class wbr 5091   I cid 5510   × cxp 5614  dom cdm 5616  ran crn 5617   Rels crels 38216   S cssr 38217   Refs crefs 38218   RefRels crefrels 38219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-rels 38521  df-ssr 38534  df-refs 38546  df-refrels 38547
This theorem is referenced by:  dfrefrels3  38550  elrefrels2  38554  refsymrels2  38601  refrelsredund4  38668
  Copyright terms: Public domain W3C validator