Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrefrels2 Structured version   Visualization version   GIF version

Theorem dfrefrels2 38489
Description: Alternate definition of the class of reflexive relations. This is a 0-ary class constant, which is recommended for definitions (see the 1. Guideline at https://us.metamath.org/ileuni/mathbox.html). Proper classes (like I, see iprc 7851) are not elements of this (or any) class: if a class is an element of another class, it is not a proper class but a set, see elex 3459. So if we use 0-ary constant classes as our main definitions, they are valid only for sets, not for proper classes. For proper classes we use predicate-type definitions like df-refrel 38488. See also the comment of df-rels 38461.

Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 38489, it keeps restriction of I: this is why the very similar definitions df-refs 38486, df-syms 38518 and df-trs 38548 diverge when we switch from (general) sets to relations in dfrefrels2 38489, dfsymrels2 38521 and dftrrels2 38551. (Contributed by Peter Mazsa, 20-Jul-2019.)

Assertion
Ref Expression
dfrefrels2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}

Proof of Theorem dfrefrels2
StepHypRef Expression
1 df-refrels 38487 . 2 RefRels = ( Refs ∩ Rels )
2 df-refs 38486 . 2 Refs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 inex1g 5261 . . . . 5 (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
43elv 3443 . . . 4 (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V
5 brssr 38477 . . . 4 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))))
64, 5ax-mp 5 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))
7 elrels6 38466 . . . . . 6 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
87elv 3443 . . . . 5 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
98biimpi 216 . . . 4 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
109sseq2d 3970 . . 3 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
116, 10bitrid 283 . 2 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
121, 2, 11abeqinbi 38227 1 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cin 3904  wss 3905   class class class wbr 5095   I cid 5517   × cxp 5621  dom cdm 5623  ran crn 5624   Rels crels 38156   S cssr 38157   Refs crefs 38158   RefRels crefrels 38159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-rels 38461  df-ssr 38474  df-refs 38486  df-refrels 38487
This theorem is referenced by:  dfrefrels3  38490  elrefrels2  38494  refsymrels2  38541  refrelsredund4  38608
  Copyright terms: Public domain W3C validator