![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of
the class of reflexive relations. This is a 0-ary
class constant, which is recommended for definitions (see the 1.
Guideline at https://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, see iprc 7439)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, see elex 3435. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 35237. See
also the comment of df-rels 35210.
Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 35238, it keeps restriction of I: this is why the very similar definitions df-refs 35235, df-syms 35263 and df-trs 35293 diverge when we switch from (general) sets to relations in dfrefrels2 35238, dfsymrels2 35266 and dftrrels2 35296. (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
dfrefrels2 | ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-refrels 35236 | . 2 ⊢ RefRels = ( Refs ∩ Rels ) | |
2 | df-refs 35235 | . 2 ⊢ Refs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | inex1g 5084 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
4 | 3 | elv 3422 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
5 | brssr 35226 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
7 | elrels6 35215 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
8 | 7 | elv 3422 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
9 | 8 | biimpi 208 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
10 | 9 | sseq2d 3891 | . . 3 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
11 | 6, 10 | syl5bb 275 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
12 | 1, 2, 11 | abeqinbi 34999 | 1 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1508 ∈ wcel 2051 {crab 3094 Vcvv 3417 ∩ cin 3830 ⊆ wss 3831 class class class wbr 4934 I cid 5315 × cxp 5409 dom cdm 5411 ran crn 5412 Rels crels 34939 S cssr 34940 Refs crefs 34941 RefRels crefrels 34942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pr 5190 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-br 4935 df-opab 4997 df-xp 5417 df-rel 5418 df-cnv 5419 df-dm 5421 df-rn 5422 df-res 5423 df-rels 35210 df-ssr 35223 df-refs 35235 df-refrels 35236 |
This theorem is referenced by: dfrefrels3 35239 elrefrels2 35242 refsymrels2 35286 refrelsredund4 35352 |
Copyright terms: Public domain | W3C validator |