| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrels2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of
the class of reflexive relations. This is a 0-ary
class constant, which is recommended for definitions (see the 1.
Guideline at https://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, see iprc 7907)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, see elex 3480. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 38530. See
also the comment of df-rels 38503.
Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 38531, it keeps restriction of I: this is why the very similar definitions df-refs 38528, df-syms 38560 and df-trs 38590 diverge when we switch from (general) sets to relations in dfrefrels2 38531, dfsymrels2 38563 and dftrrels2 38593. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfrefrels2 | ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-refrels 38529 | . 2 ⊢ RefRels = ( Refs ∩ Rels ) | |
| 2 | df-refs 38528 | . 2 ⊢ Refs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
| 3 | inex1g 5289 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
| 4 | 3 | elv 3464 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
| 5 | brssr 38519 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
| 7 | elrels6 38508 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
| 8 | 7 | elv 3464 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 9 | 8 | biimpi 216 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
| 10 | 9 | sseq2d 3991 | . . 3 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
| 11 | 6, 10 | bitrid 283 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
| 12 | 1, 2, 11 | abeqinbi 38271 | 1 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 class class class wbr 5119 I cid 5547 × cxp 5652 dom cdm 5654 ran crn 5655 Rels crels 38201 S cssr 38202 Refs crefs 38203 RefRels crefrels 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-rels 38503 df-ssr 38516 df-refs 38528 df-refrels 38529 |
| This theorem is referenced by: dfrefrels3 38532 elrefrels2 38536 refsymrels2 38583 refrelsredund4 38650 |
| Copyright terms: Public domain | W3C validator |