Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of
the class of reflexive relations. This is a 0-ary
class constant, which is recommended for definitions (see the 1.
Guideline at https://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, see iprc 7828)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, see elex 3459. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 36787. See
also the comment of df-rels 36760.
Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 36788, it keeps restriction of I: this is why the very similar definitions df-refs 36785, df-syms 36817 and df-trs 36847 diverge when we switch from (general) sets to relations in dfrefrels2 36788, dfsymrels2 36820 and dftrrels2 36850. (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
dfrefrels2 | ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-refrels 36786 | . 2 ⊢ RefRels = ( Refs ∩ Rels ) | |
2 | df-refs 36785 | . 2 ⊢ Refs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | inex1g 5263 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
4 | 3 | elv 3447 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
5 | brssr 36776 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
7 | elrels6 36765 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
8 | 7 | elv 3447 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
9 | 8 | biimpi 215 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
10 | 9 | sseq2d 3964 | . . 3 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
11 | 6, 10 | bitrid 282 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
12 | 1, 2, 11 | abeqinbi 36526 | 1 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3441 ∩ cin 3897 ⊆ wss 3898 class class class wbr 5092 I cid 5517 × cxp 5618 dom cdm 5620 ran crn 5621 Rels crels 36448 S cssr 36449 Refs crefs 36450 RefRels crefrels 36451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-rel 5627 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-rels 36760 df-ssr 36773 df-refs 36785 df-refrels 36786 |
This theorem is referenced by: dfrefrels3 36789 elrefrels2 36793 refsymrels2 36840 refrelsredund4 36907 |
Copyright terms: Public domain | W3C validator |