Detailed syntax breakdown of Definition df-rgr
Step | Hyp | Ref
| Expression |
1 | | crgr 27825 |
. 2
class
RegGraph |
2 | | vk |
. . . . . 6
setvar 𝑘 |
3 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
4 | | cxnn0 12235 |
. . . . 5
class
ℕ0* |
5 | 3, 4 | wcel 2108 |
. . . 4
wff 𝑘 ∈
ℕ0* |
6 | | vv |
. . . . . . . 8
setvar 𝑣 |
7 | 6 | cv 1538 |
. . . . . . 7
class 𝑣 |
8 | | vg |
. . . . . . . . 9
setvar 𝑔 |
9 | 8 | cv 1538 |
. . . . . . . 8
class 𝑔 |
10 | | cvtxdg 27735 |
. . . . . . . 8
class
VtxDeg |
11 | 9, 10 | cfv 6418 |
. . . . . . 7
class
(VtxDeg‘𝑔) |
12 | 7, 11 | cfv 6418 |
. . . . . 6
class
((VtxDeg‘𝑔)‘𝑣) |
13 | 12, 3 | wceq 1539 |
. . . . 5
wff
((VtxDeg‘𝑔)‘𝑣) = 𝑘 |
14 | | cvtx 27269 |
. . . . . 6
class
Vtx |
15 | 9, 14 | cfv 6418 |
. . . . 5
class
(Vtx‘𝑔) |
16 | 13, 6, 15 | wral 3063 |
. . . 4
wff
∀𝑣 ∈
(Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘 |
17 | 5, 16 | wa 395 |
. . 3
wff (𝑘 ∈
ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘) |
18 | 17, 8, 2 | copab 5132 |
. 2
class
{〈𝑔, 𝑘〉 ∣ (𝑘 ∈
ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} |
19 | 1, 18 | wceq 1539 |
1
wff RegGraph =
{〈𝑔, 𝑘〉 ∣ (𝑘 ∈
ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} |