MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrprop Structured version   Visualization version   GIF version

Theorem rgrprop 29085
Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrgr.v 𝑉 = (Vtxβ€˜πΊ)
isrgr.d 𝐷 = (VtxDegβ€˜πΊ)
Assertion
Ref Expression
rgrprop (𝐺 RegGraph 𝐾 β†’ (𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)

Proof of Theorem rgrprop
Dummy variables 𝑔 π‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rgr 29082 . . 3 RegGraph = {βŸ¨π‘”, π‘˜βŸ© ∣ (π‘˜ ∈ β„•0* ∧ βˆ€π‘£ ∈ (Vtxβ€˜π‘”)((VtxDegβ€˜π‘”)β€˜π‘£) = π‘˜)}
21bropaex12 5767 . 2 (𝐺 RegGraph 𝐾 β†’ (𝐺 ∈ V ∧ 𝐾 ∈ V))
3 isrgr.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
4 isrgr.d . . . 4 𝐷 = (VtxDegβ€˜πΊ)
53, 4isrgr 29084 . . 3 ((𝐺 ∈ V ∧ 𝐾 ∈ V) β†’ (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾)))
65biimpd 228 . 2 ((𝐺 ∈ V ∧ 𝐾 ∈ V) β†’ (𝐺 RegGraph 𝐾 β†’ (𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾)))
72, 6mpcom 38 1 (𝐺 RegGraph 𝐾 β†’ (𝐾 ∈ β„•0* ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  Vcvv 3473   class class class wbr 5148  β€˜cfv 6543  β„•0*cxnn0 12549  Vtxcvtx 28524  VtxDegcvtxdg 28990   RegGraph crgr 29080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-iota 6495  df-fv 6551  df-rgr 29082
This theorem is referenced by:  rusgrprop0  29092  uhgr0edg0rgrb  29099  frrusgrord  29862
  Copyright terms: Public domain W3C validator