| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgrprop | Structured version Visualization version GIF version | ||
| Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isrgr.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| rgrprop | ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rgr 29531 | . . 3 ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} | |
| 2 | 1 | bropaex12 5702 | . 2 ⊢ (𝐺 RegGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) |
| 3 | isrgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | isrgr.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 5 | 3, 4 | isrgr 29533 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 6 | 5 | biimpd 229 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 7 | 2, 6 | mpcom 38 | 1 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 class class class wbr 5086 ‘cfv 6476 ℕ0*cxnn0 12449 Vtxcvtx 28969 VtxDegcvtxdg 29439 RegGraph crgr 29529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-iota 6432 df-fv 6484 df-rgr 29531 |
| This theorem is referenced by: rusgrprop0 29541 uhgr0edg0rgrb 29548 frrusgrord 30313 |
| Copyright terms: Public domain | W3C validator |