Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgrprop | Structured version Visualization version GIF version |
Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrgr.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
rgrprop | ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rgr 27645 | . . 3 ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} | |
2 | 1 | bropaex12 5639 | . 2 ⊢ (𝐺 RegGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) |
3 | isrgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | isrgr.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
5 | 3, 4 | isrgr 27647 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
6 | 5 | biimpd 232 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
7 | 2, 6 | mpcom 38 | 1 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 class class class wbr 5053 ‘cfv 6380 ℕ0*cxnn0 12162 Vtxcvtx 27087 VtxDegcvtxdg 27553 RegGraph crgr 27643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-iota 6338 df-fv 6388 df-rgr 27645 |
This theorem is referenced by: rusgrprop0 27655 uhgr0edg0rgrb 27662 frrusgrord 28424 |
Copyright terms: Public domain | W3C validator |