Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgrprop | Structured version Visualization version GIF version |
Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrgr.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
rgrprop | ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rgr 28212 | . . 3 ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} | |
2 | 1 | bropaex12 5713 | . 2 ⊢ (𝐺 RegGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) |
3 | isrgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | isrgr.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
5 | 3, 4 | isrgr 28214 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
6 | 5 | biimpd 228 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
7 | 2, 6 | mpcom 38 | 1 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 Vcvv 3442 class class class wbr 5096 ‘cfv 6483 ℕ0*cxnn0 12410 Vtxcvtx 27654 VtxDegcvtxdg 28120 RegGraph crgr 28210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-xp 5630 df-iota 6435 df-fv 6491 df-rgr 28212 |
This theorem is referenced by: rusgrprop0 28222 uhgr0edg0rgrb 28229 frrusgrord 28992 |
Copyright terms: Public domain | W3C validator |