| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgrprop | Structured version Visualization version GIF version | ||
| Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isrgr.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| rgrprop | ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rgr 29542 | . . 3 ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} | |
| 2 | 1 | bropaex12 5751 | . 2 ⊢ (𝐺 RegGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) |
| 3 | isrgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | isrgr.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 5 | 3, 4 | isrgr 29544 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 6 | 5 | biimpd 229 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 7 | 2, 6 | mpcom 38 | 1 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 class class class wbr 5124 ‘cfv 6536 ℕ0*cxnn0 12579 Vtxcvtx 28980 VtxDegcvtxdg 29450 RegGraph crgr 29540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-iota 6489 df-fv 6544 df-rgr 29542 |
| This theorem is referenced by: rusgrprop0 29552 uhgr0edg0rgrb 29559 frrusgrord 30327 |
| Copyright terms: Public domain | W3C validator |