MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrprop Structured version   Visualization version   GIF version

Theorem rgrprop 27060
Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrgr.v 𝑉 = (Vtx‘𝐺)
isrgr.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
rgrprop (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)

Proof of Theorem rgrprop
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rgr 27057 . . 3 RegGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}
21bropaex12 5488 . 2 (𝐺RegGraph𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V))
3 isrgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 isrgr.d . . . 4 𝐷 = (VtxDeg‘𝐺)
53, 4isrgr 27059 . . 3 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺RegGraph𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
65biimpd 221 . 2 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
72, 6mpcom 38 1 (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wral 3081  Vcvv 3408   class class class wbr 4925  cfv 6185  0*cxnn0 11777  Vtxcvtx 26499  VtxDegcvtxdg 26965  RegGraphcrgr 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-xp 5409  df-iota 6149  df-fv 6193  df-rgr 27057
This theorem is referenced by:  rusgrprop0  27067  uhgr0edg0rgrb  27074  frrusgrord  27890
  Copyright terms: Public domain W3C validator