MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrprop Structured version   Visualization version   GIF version

Theorem rgrprop 29560
Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrgr.v 𝑉 = (Vtx‘𝐺)
isrgr.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
rgrprop (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)

Proof of Theorem rgrprop
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rgr 29557 . . 3 RegGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}
21bropaex12 5712 . 2 (𝐺 RegGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V))
3 isrgr.v . . . 4 𝑉 = (Vtx‘𝐺)
4 isrgr.d . . . 4 𝐷 = (VtxDeg‘𝐺)
53, 4isrgr 29559 . . 3 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
65biimpd 229 . 2 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
72, 6mpcom 38 1 (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437   class class class wbr 5095  cfv 6489  0*cxnn0 12465  Vtxcvtx 28995  VtxDegcvtxdg 29465   RegGraph crgr 29555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-iota 6445  df-fv 6497  df-rgr 29557
This theorem is referenced by:  rusgrprop0  29567  uhgr0edg0rgrb  29574  frrusgrord  30342
  Copyright terms: Public domain W3C validator