| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rusgr | Structured version Visualization version GIF version | ||
| Description: Define the "k-regular simple graph" predicate, which is true for a simple graph being k-regular: read 𝐺 RegUSGraph 𝐾 as 𝐺 is a 𝐾-regular simple graph. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-rusgr | ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crusgr 29574 | . 2 class RegUSGraph | |
| 2 | vg | . . . . . 6 setvar 𝑔 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 4 | cusgr 29166 | . . . . 5 class USGraph | |
| 5 | 3, 4 | wcel 2108 | . . . 4 wff 𝑔 ∈ USGraph |
| 6 | vk | . . . . . 6 setvar 𝑘 | |
| 7 | 6 | cv 1539 | . . . . 5 class 𝑘 |
| 8 | crgr 29573 | . . . . 5 class RegGraph | |
| 9 | 3, 7, 8 | wbr 5143 | . . . 4 wff 𝑔 RegGraph 𝑘 |
| 10 | 5, 9 | wa 395 | . . 3 wff (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) |
| 11 | 10, 2, 6 | copab 5205 | . 2 class {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
| 12 | 1, 11 | wceq 1540 | 1 wff RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isrusgr 29579 rusgrprop 29580 |
| Copyright terms: Public domain | W3C validator |