MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrgr Structured version   Visualization version   GIF version

Theorem isrgr 29496
Description: The property of a class being a k-regular graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrgr.v 𝑉 = (Vtx‘𝐺)
isrgr.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
isrgr ((𝐺𝑊𝐾𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)   𝑊(𝑣)   𝑍(𝑣)

Proof of Theorem isrgr
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2814 . . . . 5 (𝑘 = 𝐾 → (𝑘 ∈ ℕ0*𝐾 ∈ ℕ0*))
21adantl 480 . . . 4 ((𝑔 = 𝐺𝑘 = 𝐾) → (𝑘 ∈ ℕ0*𝐾 ∈ ℕ0*))
3 fveq2 6901 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
43adantr 479 . . . . 5 ((𝑔 = 𝐺𝑘 = 𝐾) → (Vtx‘𝑔) = (Vtx‘𝐺))
5 fveq2 6901 . . . . . . . 8 (𝑔 = 𝐺 → (VtxDeg‘𝑔) = (VtxDeg‘𝐺))
65fveq1d 6903 . . . . . . 7 (𝑔 = 𝐺 → ((VtxDeg‘𝑔)‘𝑣) = ((VtxDeg‘𝐺)‘𝑣))
76adantr 479 . . . . . 6 ((𝑔 = 𝐺𝑘 = 𝐾) → ((VtxDeg‘𝑔)‘𝑣) = ((VtxDeg‘𝐺)‘𝑣))
8 simpr 483 . . . . . 6 ((𝑔 = 𝐺𝑘 = 𝐾) → 𝑘 = 𝐾)
97, 8eqeq12d 2742 . . . . 5 ((𝑔 = 𝐺𝑘 = 𝐾) → (((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
104, 9raleqbidv 3330 . . . 4 ((𝑔 = 𝐺𝑘 = 𝐾) → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘 ↔ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝐾))
112, 10anbi12d 630 . . 3 ((𝑔 = 𝐺𝑘 = 𝐾) → ((𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘) ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝐾)))
12 df-rgr 29494 . . 3 RegGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}
1311, 12brabga 5540 . 2 ((𝐺𝑊𝐾𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝐾)))
14 isrgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
15 isrgr.d . . . . . . . 8 𝐷 = (VtxDeg‘𝐺)
1615fveq1i 6902 . . . . . . 7 (𝐷𝑣) = ((VtxDeg‘𝐺)‘𝑣)
1716eqeq1i 2731 . . . . . 6 ((𝐷𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)
1814, 17raleqbii 3328 . . . . 5 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ↔ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝐾)
1918bicomi 223 . . . 4 (∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)
2019a1i 11 . . 3 ((𝐺𝑊𝐾𝑍) → (∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ∀𝑣𝑉 (𝐷𝑣) = 𝐾))
2120anbi2d 628 . 2 ((𝐺𝑊𝐾𝑍) → ((𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝐾) ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
2213, 21bitrd 278 1 ((𝐺𝑊𝐾𝑍) → (𝐺 RegGraph 𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051   class class class wbr 5153  cfv 6554  0*cxnn0 12596  Vtxcvtx 28932  VtxDegcvtxdg 29402   RegGraph crgr 29492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-iota 6506  df-fv 6562  df-rgr 29494
This theorem is referenced by:  rgrprop  29497  isrusgr0  29503  0edg0rgr  29509  0vtxrgr  29513  rgrprcx  29529
  Copyright terms: Public domain W3C validator