MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgr Structured version   Visualization version   GIF version

Theorem isrusgr 29538
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
isrusgr ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))

Proof of Theorem isrusgr
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph))
21adantr 480 . . 3 ((𝑔 = 𝐺𝑘 = 𝐾) → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph))
3 breq12 5096 . . 3 ((𝑔 = 𝐺𝑘 = 𝐾) → (𝑔 RegGraph 𝑘𝐺 RegGraph 𝐾))
42, 3anbi12d 632 . 2 ((𝑔 = 𝐺𝑘 = 𝐾) → ((𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
5 df-rusgr 29535 . 2 RegUSGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)}
64, 5brabga 5474 1 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  USGraphcusgr 29125   RegGraph crgr 29532   RegUSGraph crusgr 29533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-rusgr 29535
This theorem is referenced by:  rusgrprop  29539  isrusgr0  29543  usgr0edg0rusgr  29552  0vtxrusgr  29554
  Copyright terms: Public domain W3C validator