| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrusgr | Structured version Visualization version GIF version | ||
| Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrusgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) |
| 3 | breq12 5096 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 RegGraph 𝑘 ↔ 𝐺 RegGraph 𝐾)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → ((𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
| 5 | df-rusgr 29535 | . 2 ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | |
| 6 | 4, 5 | brabga 5474 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 USGraphcusgr 29125 RegGraph crgr 29532 RegUSGraph crusgr 29533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rusgr 29535 |
| This theorem is referenced by: rusgrprop 29539 isrusgr0 29543 usgr0edg0rusgr 29552 0vtxrusgr 29554 |
| Copyright terms: Public domain | W3C validator |