![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrusgr | Structured version Visualization version GIF version |
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) |
3 | breq12 5153 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 RegGraph 𝑘 ↔ 𝐺 RegGraph 𝐾)) | |
4 | 2, 3 | anbi12d 632 | . 2 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → ((𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
5 | df-rusgr 29591 | . 2 ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | |
6 | 4, 5 | brabga 5544 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 USGraphcusgr 29181 RegGraph crgr 29588 RegUSGraph crusgr 29589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rusgr 29591 |
This theorem is referenced by: rusgrprop 29595 isrusgr0 29599 usgr0edg0rusgr 29608 0vtxrusgr 29610 |
Copyright terms: Public domain | W3C validator |