Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isrusgr | Structured version Visualization version GIF version |
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) |
3 | breq12 5058 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 RegGraph 𝑘 ↔ 𝐺 RegGraph 𝐾)) | |
4 | 2, 3 | anbi12d 634 | . 2 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → ((𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
5 | df-rusgr 27646 | . 2 ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | |
6 | 4, 5 | brabga 5415 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 USGraphcusgr 27240 RegGraph crgr 27643 RegUSGraph crusgr 27644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-rusgr 27646 |
This theorem is referenced by: rusgrprop 27650 isrusgr0 27654 usgr0edg0rusgr 27663 0vtxrusgr 27665 |
Copyright terms: Public domain | W3C validator |