MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgr Structured version   Visualization version   GIF version

Theorem isrusgr 29542
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
isrusgr ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))

Proof of Theorem isrusgr
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph))
21adantr 480 . . 3 ((𝑔 = 𝐺𝑘 = 𝐾) → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph))
3 breq12 5098 . . 3 ((𝑔 = 𝐺𝑘 = 𝐾) → (𝑔 RegGraph 𝑘𝐺 RegGraph 𝐾))
42, 3anbi12d 632 . 2 ((𝑔 = 𝐺𝑘 = 𝐾) → ((𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
5 df-rusgr 29539 . 2 RegUSGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)}
64, 5brabga 5477 1 ((𝐺𝑊𝐾𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  USGraphcusgr 29129   RegGraph crgr 29536   RegUSGraph crusgr 29537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-rusgr 29539
This theorem is referenced by:  rusgrprop  29543  isrusgr0  29547  usgr0edg0rusgr  29556  0vtxrusgr  29558
  Copyright terms: Public domain W3C validator