![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrprop | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
rusgrprop | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rusgr 29324 | . . 3 ⊢ RegUSGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | |
2 | 1 | bropaex12 5760 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) |
3 | isrusgr 29327 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) | |
4 | 3 | biimpd 228 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
5 | 2, 4 | mpcom 38 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 Vcvv 3468 class class class wbr 5141 USGraphcusgr 28917 RegGraph crgr 29321 RegUSGraph crusgr 29322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rusgr 29324 |
This theorem is referenced by: rusgrrgr 29329 rusgrusgr 29330 rusgrprop0 29333 |
Copyright terms: Public domain | W3C validator |