MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrprop Structured version   Visualization version   GIF version

Theorem rusgrprop 27832
Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrprop (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))

Proof of Theorem rusgrprop
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rusgr 27828 . . 3 RegUSGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)}
21bropaex12 5668 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V))
3 isrusgr 27831 . . 3 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
43biimpd 228 . 2 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
52, 4mpcom 38 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422   class class class wbr 5070  USGraphcusgr 27422   RegGraph crgr 27825   RegUSGraph crusgr 27826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rusgr 27828
This theorem is referenced by:  rusgrrgr  27833  rusgrusgr  27834  rusgrprop0  27837
  Copyright terms: Public domain W3C validator