MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrprop Structured version   Visualization version   GIF version

Theorem rusgrprop 29580
Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrprop (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))

Proof of Theorem rusgrprop
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rusgr 29576 . . 3 RegUSGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)}
21bropaex12 5777 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V))
3 isrusgr 29579 . . 3 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
43biimpd 229 . 2 ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)))
52, 4mpcom 38 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3480   class class class wbr 5143  USGraphcusgr 29166   RegGraph crgr 29573   RegUSGraph crusgr 29574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rusgr 29576
This theorem is referenced by:  rusgrrgr  29581  rusgrusgr  29582  rusgrprop0  29585
  Copyright terms: Public domain W3C validator