| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrprop | Structured version Visualization version GIF version | ||
| Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| Ref | Expression |
|---|---|
| rusgrprop | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rusgr 29486 | . . 3 ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | |
| 2 | 1 | bropaex12 5730 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) |
| 3 | isrusgr 29489 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) | |
| 4 | 3 | biimpd 229 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
| 5 | 2, 4 | mpcom 38 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 USGraphcusgr 29076 RegGraph crgr 29483 RegUSGraph crusgr 29484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rusgr 29486 |
| This theorem is referenced by: rusgrrgr 29491 rusgrusgr 29492 rusgrprop0 29495 |
| Copyright terms: Public domain | W3C validator |