| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s5 | Structured version Visualization version GIF version | ||
| Description: Define the length 5 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s5 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | cE | . . 3 class 𝐸 | |
| 6 | 1, 2, 3, 4, 5 | cs5 14746 | . 2 class 〈“𝐴𝐵𝐶𝐷𝐸”〉 |
| 7 | 1, 2, 3, 4 | cs4 14745 | . . 3 class 〈“𝐴𝐵𝐶𝐷”〉 |
| 8 | 5 | cs1 14498 | . . 3 class 〈“𝐸”〉 |
| 9 | cconcat 14472 | . . 3 class ++ | |
| 10 | 7, 8, 9 | co 7341 | . 2 class (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) |
| 11 | 6, 10 | wceq 1541 | 1 wff 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s5eqd 14768 s5cld 14776 s5cli 14785 s5len 14802 s1s4 14827 s1s5 14828 s4s2 14832 s5s2 14837 konigsberglem1 30224 konigsberglem2 30225 konigsberglem3 30226 gpgprismgr4cycllem6 48131 gpgprismgr4cycllem7 48132 gpgprismgr4cycllem10 48135 |
| Copyright terms: Public domain | W3C validator |