MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s5eqd Structured version   Visualization version   GIF version

Theorem s5eqd 14579
Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
Assertion
Ref Expression
s5eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)

Proof of Theorem s5eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
51, 2, 3, 4s4eqd 14578 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)
6 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
76s1eqd 14306 . . 3 (𝜑 → ⟨“𝐸”⟩ = ⟨“𝑅”⟩)
85, 7oveq12d 7293 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩) = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩))
9 df-s5 14564 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩)
10 df-s5 14564 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅”⟩ = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩)
118, 9, 103eqtr4g 2803 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  (class class class)co 7275   ++ cconcat 14273  ⟨“cs1 14300  ⟨“cs4 14556  ⟨“cs5 14557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-s1 14301  df-s2 14561  df-s3 14562  df-s4 14563  df-s5 14564
This theorem is referenced by:  s6eqd  14580
  Copyright terms: Public domain W3C validator