![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s5eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
s5eqd.5 | ⊢ (𝜑 → 𝐸 = 𝑅) |
Ref | Expression |
---|---|
s5eqd | ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
4 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
5 | 1, 2, 3, 4 | s4eqd 14815 | . . 3 ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩) |
6 | s5eqd.5 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝑅) | |
7 | 6 | s1eqd 14550 | . . 3 ⊢ (𝜑 → ⟨“𝐸”⟩ = ⟨“𝑅”⟩) |
8 | 5, 7 | oveq12d 7426 | . 2 ⊢ (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩) = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩)) |
9 | df-s5 14801 | . 2 ⊢ ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩) | |
10 | df-s5 14801 | . 2 ⊢ ⟨“𝑁𝑂𝑃𝑄𝑅”⟩ = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩) | |
11 | 8, 9, 10 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 (class class class)co 7408 ++ cconcat 14519 ⟨“cs1 14544 ⟨“cs4 14793 ⟨“cs5 14794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-s1 14545 df-s2 14798 df-s3 14799 df-s4 14800 df-s5 14801 |
This theorem is referenced by: s6eqd 14817 |
Copyright terms: Public domain | W3C validator |