MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s5eqd Structured version   Visualization version   GIF version

Theorem s5eqd 14773
Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
Assertion
Ref Expression
s5eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)

Proof of Theorem s5eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
51, 2, 3, 4s4eqd 14772 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)
6 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
76s1eqd 14509 . . 3 (𝜑 → ⟨“𝐸”⟩ = ⟨“𝑅”⟩)
85, 7oveq12d 7364 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩) = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩))
9 df-s5 14758 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩)
10 df-s5 14758 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅”⟩ = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩)
118, 9, 103eqtr4g 2791 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  (class class class)co 7346   ++ cconcat 14477  ⟨“cs1 14503  ⟨“cs4 14750  ⟨“cs5 14751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-s1 14504  df-s2 14755  df-s3 14756  df-s4 14757  df-s5 14758
This theorem is referenced by:  s6eqd  14774
  Copyright terms: Public domain W3C validator