Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  s5eqd Structured version   Visualization version   GIF version

Theorem s5eqd 14223
 Description: Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
Assertion
Ref Expression
s5eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)

Proof of Theorem s5eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
51, 2, 3, 4s4eqd 14222 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩)
6 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
76s1eqd 13950 . . 3 (𝜑 → ⟨“𝐸”⟩ = ⟨“𝑅”⟩)
85, 7oveq12d 7157 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩) = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩))
9 df-s5 14208 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩)
10 df-s5 14208 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅”⟩ = (⟨“𝑁𝑂𝑃𝑄”⟩ ++ ⟨“𝑅”⟩)
118, 9, 103eqtr4g 2861 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  (class class class)co 7139   ++ cconcat 13917  ⟨“cs1 13944  ⟨“cs4 14200  ⟨“cs5 14201 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-s1 13945  df-s2 14205  df-s3 14206  df-s4 14207  df-s5 14208 This theorem is referenced by:  s6eqd  14224
 Copyright terms: Public domain W3C validator