MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem3 Structured version   Visualization version   GIF version

Theorem konigsberglem3 30198
Description: Lemma 3 for konigsberg 30201: Vertex 3 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem3 ((VtxDeg‘𝐺)‘3) = 3

Proof of Theorem konigsberglem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7382 . . . . 5 (0...3) ∈ V
2 s6cli 14791 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V
32elexi 3459 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ V
41, 3opvtxfvi 28954 . . . 4 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (0...3)
54eqcomi 2738 . . 3 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
6 3nn0 12402 . . . 4 3 ∈ ℕ0
7 nn0fz0 13528 . . . 4 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
86, 7mpbi 230 . . 3 3 ∈ (0...3)
91, 3opiedgfvi 28955 . . . 4 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩
109eqcomi 2738 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
11 s1cli 14512 . . . 4 ⟨“{2, 3}”⟩ ∈ Word V
12 df-s7 14760 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
13 eqid 2729 . . . . 5 (0...3) = (0...3)
14 eqid 2729 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
15 eqid 2729 . . . . 5 ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩ = ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩
1613, 14, 15konigsbergssiedgw 30194 . . . 4 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V ∧ ⟨“{2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
172, 11, 12, 16mp3an 1463 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
18 s5cli 14790 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V
1918elexi 3459 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ V
201, 19opvtxfvi 28954 . . . . . 6 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (0...3)
2120eqcomi 2738 . . . . 5 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
221, 19opiedgfvi 28955 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩
2322eqcomi 2738 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
24 s2cli 14787 . . . . . 6 ⟨“{2, 3} {2, 3}”⟩ ∈ Word V
25 s5s2 14842 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)
2613, 14, 15konigsbergssiedgw 30194 . . . . . 6 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V ∧ ⟨“{2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2718, 24, 25, 26mp3an 1463 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
28 s4cli 14789 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V
2928elexi 3459 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ V
301, 29opvtxfvi 28954 . . . . . . 7 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (0...3)
3130eqcomi 2738 . . . . . 6 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
321, 29opiedgfvi 28955 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩
3332eqcomi 2738 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
34 s3cli 14788 . . . . . . 7 ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
35 s4s3 14838 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)
3613, 14, 15konigsbergssiedgw 30194 . . . . . . 7 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V ∧ ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
3728, 34, 35, 36mp3an 1463 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
38 s3cli 14788 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V
3938elexi 3459 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ V
401, 39opvtxfvi 28954 . . . . . . . 8 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (0...3)
4140eqcomi 2738 . . . . . . 7 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
421, 39opiedgfvi 28955 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3}”⟩
4342eqcomi 2738 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
44 s4cli 14789 . . . . . . . 8 ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
45 s3s4 14840 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)
4613, 14, 15konigsbergssiedgw 30194 . . . . . . . 8 ((⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V ∧ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4738, 44, 45, 46mp3an 1463 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
48 s2cli 14787 . . . . . . . . . . . 12 ⟨“{0, 1} {0, 2}”⟩ ∈ Word V
4948elexi 3459 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ ∈ V
501, 49opvtxfvi 28954 . . . . . . . . . 10 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (0...3)
5150eqcomi 2738 . . . . . . . . 9 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
521, 49opiedgfvi 28955 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = ⟨“{0, 1} {0, 2}”⟩
5352eqcomi 2738 . . . . . . . . 9 ⟨“{0, 1} {0, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
54 s5cli 14790 . . . . . . . . . 10 ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
55 s2s5 14841 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
5613, 14, 15konigsbergssiedgw 30194 . . . . . . . . . 10 ((⟨“{0, 1} {0, 2}”⟩ ∈ Word V ∧ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
5748, 54, 55, 56mp3an 1463 . . . . . . . . 9 ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
58 s1cli 14512 . . . . . . . . . . . . 13 ⟨“{0, 1}”⟩ ∈ Word V
5958elexi 3459 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ ∈ V
601, 59opvtxfvi 28954 . . . . . . . . . . 11 (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (0...3)
6160eqcomi 2738 . . . . . . . . . 10 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
621, 59opiedgfvi 28955 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = ⟨“{0, 1}”⟩
6362eqcomi 2738 . . . . . . . . . 10 ⟨“{0, 1}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
64 s6cli 14791 . . . . . . . . . . 11 ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
65 s1s6 14834 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
6613, 14, 15konigsbergssiedgw 30194 . . . . . . . . . . 11 ((⟨“{0, 1}”⟩ ∈ Word V ∧ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6758, 64, 65, 66mp3an 1463 . . . . . . . . . 10 ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
68 0ex 5246 . . . . . . . . . . . . 13 ∅ ∈ V
691, 68opvtxfvi 28954 . . . . . . . . . . . 12 (Vtx‘⟨(0...3), ∅⟩) = (0...3)
7069eqcomi 2738 . . . . . . . . . . 11 (0...3) = (Vtx‘⟨(0...3), ∅⟩)
711, 68opiedgfvi 28955 . . . . . . . . . . . 12 (iEdg‘⟨(0...3), ∅⟩) = ∅
7271eqcomi 2738 . . . . . . . . . . 11 ∅ = (iEdg‘⟨(0...3), ∅⟩)
73 wrd0 14446 . . . . . . . . . . 11 ∅ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
74 eqid 2729 . . . . . . . . . . . 12 ∅ = ∅
7570, 72vtxdg0e 29420 . . . . . . . . . . . 12 ((3 ∈ (0...3) ∧ ∅ = ∅) → ((VtxDeg‘⟨(0...3), ∅⟩)‘3) = 0)
768, 74, 75mp2an 692 . . . . . . . . . . 11 ((VtxDeg‘⟨(0...3), ∅⟩)‘3) = 0
77 0elfz 13527 . . . . . . . . . . . 12 (3 ∈ ℕ0 → 0 ∈ (0...3))
786, 77ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...3)
79 3ne0 12234 . . . . . . . . . . . 12 3 ≠ 0
8079necomi 2979 . . . . . . . . . . 11 0 ≠ 3
81 1nn0 12400 . . . . . . . . . . . 12 1 ∈ ℕ0
82 1le3 12335 . . . . . . . . . . . 12 1 ≤ 3
83 elfz2nn0 13521 . . . . . . . . . . . 12 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
8481, 6, 82, 83mpbir3an 1342 . . . . . . . . . . 11 1 ∈ (0...3)
85 1re 11115 . . . . . . . . . . . 12 1 ∈ ℝ
86 1lt3 12296 . . . . . . . . . . . 12 1 < 3
8785, 86ltneii 11229 . . . . . . . . . . 11 1 ≠ 3
88 s0s1 14829 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ = (∅ ++ ⟨“{0, 1}”⟩)
8962, 88eqtri 2752 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (∅ ++ ⟨“{0, 1}”⟩)
9070, 8, 72, 73, 76, 60, 78, 80, 84, 87, 89vdegp1ai 29482 . . . . . . . . . 10 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘3) = 0
91 2nn0 12401 . . . . . . . . . . 11 2 ∈ ℕ0
92 2re 12202 . . . . . . . . . . . 12 2 ∈ ℝ
93 3re 12208 . . . . . . . . . . . 12 3 ∈ ℝ
94 2lt3 12295 . . . . . . . . . . . 12 2 < 3
9592, 93, 94ltleii 11239 . . . . . . . . . . 11 2 ≤ 3
96 elfz2nn0 13521 . . . . . . . . . . 11 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
9791, 6, 95, 96mpbir3an 1342 . . . . . . . . . 10 2 ∈ (0...3)
9892, 94ltneii 11229 . . . . . . . . . 10 2 ≠ 3
99 df-s2 14755 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
10052, 99eqtri 2752 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
10161, 8, 63, 67, 90, 50, 78, 80, 97, 98, 100vdegp1ai 29482 . . . . . . . . 9 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)‘3) = 0
102 df-s3 14756 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10342, 102eqtri 2752 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10451, 8, 53, 57, 101, 40, 78, 80, 103vdegp1ci 29484 . . . . . . . 8 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘3) = (0 + 1)
105 0p1e1 12245 . . . . . . . 8 (0 + 1) = 1
106104, 105eqtri 2752 . . . . . . 7 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘3) = 1
107 df-s4 14757 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10832, 107eqtri 2752 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10941, 8, 43, 47, 106, 30, 84, 87, 97, 98, 108vdegp1ai 29482 . . . . . 6 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘3) = 1
110 df-s5 14758 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11122, 110eqtri 2752 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11231, 8, 33, 37, 109, 20, 84, 87, 97, 98, 111vdegp1ai 29482 . . . . 5 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘3) = 1
113 df-s6 14759 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
1149, 113eqtri 2752 . . . . 5 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11521, 8, 23, 27, 112, 4, 97, 98, 114vdegp1ci 29484 . . . 4 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘3) = (1 + 1)
116 1p1e2 12248 . . . 4 (1 + 1) = 2
117115, 116eqtri 2752 . . 3 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘3) = 2
118 konigsberg.v . . . 4 𝑉 = (0...3)
119 konigsberg.e . . . 4 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
120 konigsberg.g . . . 4 𝐺 = ⟨𝑉, 𝐸
121118, 119, 120konigsbergvtx 30190 . . 3 (Vtx‘𝐺) = (0...3)
122118, 119, 120konigsbergiedg 30191 . . . 4 (iEdg‘𝐺) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
123122, 12eqtri 2752 . . 3 (iEdg‘𝐺) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
1245, 8, 10, 17, 117, 121, 97, 98, 123vdegp1ci 29484 . 2 ((VtxDeg‘𝐺)‘3) = (2 + 1)
125 2p1e3 12265 . 2 (2 + 1) = 3
126124, 125eqtri 2752 1 ((VtxDeg‘𝐺)‘3) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  cdif 3900  c0 4284  𝒫 cpw 4551  {csn 4577  {cpr 4579  cop 4583   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  cle 11150  2c2 12183  3c3 12184  0cn0 12384  ...cfz 13410  chash 14237  Word cword 14420   ++ cconcat 14477  ⟨“cs1 14502  ⟨“cs2 14748  ⟨“cs3 14749  ⟨“cs4 14750  ⟨“cs5 14751  ⟨“cs6 14752  ⟨“cs7 14753  Vtxcvtx 28941  iEdgciedg 28942  VtxDegcvtxdg 29411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-xadd 13015  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-s4 14757  df-s5 14758  df-s6 14759  df-s7 14760  df-vtx 28943  df-iedg 28944  df-vtxdg 29412
This theorem is referenced by:  konigsberglem4  30199
  Copyright terms: Public domain W3C validator