MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem3 Structured version   Visualization version   GIF version

Theorem konigsberglem3 28667
Description: Lemma 3 for konigsberg 28670: Vertex 3 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem3 ((VtxDeg‘𝐺)‘3) = 3

Proof of Theorem konigsberglem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7340 . . . . 5 (0...3) ∈ V
2 s6cli 14646 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V
32elexi 3456 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ V
41, 3opvtxfvi 27428 . . . 4 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (0...3)
54eqcomi 2745 . . 3 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
6 3nn0 12301 . . . 4 3 ∈ ℕ0
7 nn0fz0 13404 . . . 4 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
86, 7mpbi 229 . . 3 3 ∈ (0...3)
91, 3opiedgfvi 27429 . . . 4 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩
109eqcomi 2745 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
11 s1cli 14359 . . . 4 ⟨“{2, 3}”⟩ ∈ Word V
12 df-s7 14615 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
13 eqid 2736 . . . . 5 (0...3) = (0...3)
14 eqid 2736 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
15 eqid 2736 . . . . 5 ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩ = ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩
1613, 14, 15konigsbergssiedgw 28663 . . . 4 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V ∧ ⟨“{2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
172, 11, 12, 16mp3an 1461 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
18 s5cli 14645 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V
1918elexi 3456 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ V
201, 19opvtxfvi 27428 . . . . . 6 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (0...3)
2120eqcomi 2745 . . . . 5 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
221, 19opiedgfvi 27429 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩
2322eqcomi 2745 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
24 s2cli 14642 . . . . . 6 ⟨“{2, 3} {2, 3}”⟩ ∈ Word V
25 s5s2 14697 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)
2613, 14, 15konigsbergssiedgw 28663 . . . . . 6 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V ∧ ⟨“{2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2718, 24, 25, 26mp3an 1461 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
28 s4cli 14644 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V
2928elexi 3456 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ V
301, 29opvtxfvi 27428 . . . . . . 7 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (0...3)
3130eqcomi 2745 . . . . . 6 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
321, 29opiedgfvi 27429 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩
3332eqcomi 2745 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
34 s3cli 14643 . . . . . . 7 ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
35 s4s3 14693 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)
3613, 14, 15konigsbergssiedgw 28663 . . . . . . 7 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V ∧ ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
3728, 34, 35, 36mp3an 1461 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
38 s3cli 14643 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V
3938elexi 3456 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ V
401, 39opvtxfvi 27428 . . . . . . . 8 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (0...3)
4140eqcomi 2745 . . . . . . 7 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
421, 39opiedgfvi 27429 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3}”⟩
4342eqcomi 2745 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
44 s4cli 14644 . . . . . . . 8 ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
45 s3s4 14695 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)
4613, 14, 15konigsbergssiedgw 28663 . . . . . . . 8 ((⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V ∧ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4738, 44, 45, 46mp3an 1461 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
48 s2cli 14642 . . . . . . . . . . . 12 ⟨“{0, 1} {0, 2}”⟩ ∈ Word V
4948elexi 3456 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ ∈ V
501, 49opvtxfvi 27428 . . . . . . . . . 10 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (0...3)
5150eqcomi 2745 . . . . . . . . 9 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
521, 49opiedgfvi 27429 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = ⟨“{0, 1} {0, 2}”⟩
5352eqcomi 2745 . . . . . . . . 9 ⟨“{0, 1} {0, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
54 s5cli 14645 . . . . . . . . . 10 ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
55 s2s5 14696 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
5613, 14, 15konigsbergssiedgw 28663 . . . . . . . . . 10 ((⟨“{0, 1} {0, 2}”⟩ ∈ Word V ∧ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
5748, 54, 55, 56mp3an 1461 . . . . . . . . 9 ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
58 s1cli 14359 . . . . . . . . . . . . 13 ⟨“{0, 1}”⟩ ∈ Word V
5958elexi 3456 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ ∈ V
601, 59opvtxfvi 27428 . . . . . . . . . . 11 (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (0...3)
6160eqcomi 2745 . . . . . . . . . 10 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
621, 59opiedgfvi 27429 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = ⟨“{0, 1}”⟩
6362eqcomi 2745 . . . . . . . . . 10 ⟨“{0, 1}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
64 s6cli 14646 . . . . . . . . . . 11 ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
65 s1s6 14689 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
6613, 14, 15konigsbergssiedgw 28663 . . . . . . . . . . 11 ((⟨“{0, 1}”⟩ ∈ Word V ∧ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6758, 64, 65, 66mp3an 1461 . . . . . . . . . 10 ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
68 0ex 5240 . . . . . . . . . . . . 13 ∅ ∈ V
691, 68opvtxfvi 27428 . . . . . . . . . . . 12 (Vtx‘⟨(0...3), ∅⟩) = (0...3)
7069eqcomi 2745 . . . . . . . . . . 11 (0...3) = (Vtx‘⟨(0...3), ∅⟩)
711, 68opiedgfvi 27429 . . . . . . . . . . . 12 (iEdg‘⟨(0...3), ∅⟩) = ∅
7271eqcomi 2745 . . . . . . . . . . 11 ∅ = (iEdg‘⟨(0...3), ∅⟩)
73 wrd0 14291 . . . . . . . . . . 11 ∅ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
74 eqid 2736 . . . . . . . . . . . 12 ∅ = ∅
7570, 72vtxdg0e 27890 . . . . . . . . . . . 12 ((3 ∈ (0...3) ∧ ∅ = ∅) → ((VtxDeg‘⟨(0...3), ∅⟩)‘3) = 0)
768, 74, 75mp2an 690 . . . . . . . . . . 11 ((VtxDeg‘⟨(0...3), ∅⟩)‘3) = 0
77 0elfz 13403 . . . . . . . . . . . 12 (3 ∈ ℕ0 → 0 ∈ (0...3))
786, 77ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...3)
79 3ne0 12129 . . . . . . . . . . . 12 3 ≠ 0
8079necomi 2996 . . . . . . . . . . 11 0 ≠ 3
81 1nn0 12299 . . . . . . . . . . . 12 1 ∈ ℕ0
82 1le3 12235 . . . . . . . . . . . 12 1 ≤ 3
83 elfz2nn0 13397 . . . . . . . . . . . 12 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
8481, 6, 82, 83mpbir3an 1341 . . . . . . . . . . 11 1 ∈ (0...3)
85 1re 11025 . . . . . . . . . . . 12 1 ∈ ℝ
86 1lt3 12196 . . . . . . . . . . . 12 1 < 3
8785, 86ltneii 11138 . . . . . . . . . . 11 1 ≠ 3
88 s0s1 14684 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ = (∅ ++ ⟨“{0, 1}”⟩)
8962, 88eqtri 2764 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (∅ ++ ⟨“{0, 1}”⟩)
9070, 8, 72, 73, 76, 60, 78, 80, 84, 87, 89vdegp1ai 27952 . . . . . . . . . 10 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘3) = 0
91 2nn0 12300 . . . . . . . . . . 11 2 ∈ ℕ0
92 2re 12097 . . . . . . . . . . . 12 2 ∈ ℝ
93 3re 12103 . . . . . . . . . . . 12 3 ∈ ℝ
94 2lt3 12195 . . . . . . . . . . . 12 2 < 3
9592, 93, 94ltleii 11148 . . . . . . . . . . 11 2 ≤ 3
96 elfz2nn0 13397 . . . . . . . . . . 11 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
9791, 6, 95, 96mpbir3an 1341 . . . . . . . . . 10 2 ∈ (0...3)
9892, 94ltneii 11138 . . . . . . . . . 10 2 ≠ 3
99 df-s2 14610 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
10052, 99eqtri 2764 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
10161, 8, 63, 67, 90, 50, 78, 80, 97, 98, 100vdegp1ai 27952 . . . . . . . . 9 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)‘3) = 0
102 df-s3 14611 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10342, 102eqtri 2764 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10451, 8, 53, 57, 101, 40, 78, 80, 103vdegp1ci 27954 . . . . . . . 8 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘3) = (0 + 1)
105 0p1e1 12145 . . . . . . . 8 (0 + 1) = 1
106104, 105eqtri 2764 . . . . . . 7 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘3) = 1
107 df-s4 14612 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10832, 107eqtri 2764 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10941, 8, 43, 47, 106, 30, 84, 87, 97, 98, 108vdegp1ai 27952 . . . . . 6 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘3) = 1
110 df-s5 14613 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11122, 110eqtri 2764 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11231, 8, 33, 37, 109, 20, 84, 87, 97, 98, 111vdegp1ai 27952 . . . . 5 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘3) = 1
113 df-s6 14614 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
1149, 113eqtri 2764 . . . . 5 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11521, 8, 23, 27, 112, 4, 97, 98, 114vdegp1ci 27954 . . . 4 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘3) = (1 + 1)
116 1p1e2 12148 . . . 4 (1 + 1) = 2
117115, 116eqtri 2764 . . 3 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘3) = 2
118 konigsberg.v . . . 4 𝑉 = (0...3)
119 konigsberg.e . . . 4 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
120 konigsberg.g . . . 4 𝐺 = ⟨𝑉, 𝐸
121118, 119, 120konigsbergvtx 28659 . . 3 (Vtx‘𝐺) = (0...3)
122118, 119, 120konigsbergiedg 28660 . . . 4 (iEdg‘𝐺) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
123122, 12eqtri 2764 . . 3 (iEdg‘𝐺) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
1245, 8, 10, 17, 117, 121, 97, 98, 123vdegp1ci 27954 . 2 ((VtxDeg‘𝐺)‘3) = (2 + 1)
125 2p1e3 12165 . 2 (2 + 1) = 3
126124, 125eqtri 2764 1 ((VtxDeg‘𝐺)‘3) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  {crab 3303  Vcvv 3437  cdif 3889  c0 4262  𝒫 cpw 4539  {csn 4565  {cpr 4567  cop 4571   class class class wbr 5081  cfv 6458  (class class class)co 7307  0cc0 10921  1c1 10922   + caddc 10924  cle 11060  2c2 12078  3c3 12079  0cn0 12283  ...cfz 13289  chash 14094  Word cword 14266   ++ cconcat 14322  ⟨“cs1 14349  ⟨“cs2 14603  ⟨“cs3 14604  ⟨“cs4 14605  ⟨“cs5 14606  ⟨“cs6 14607  ⟨“cs7 14608  Vtxcvtx 27415  iEdgciedg 27416  VtxDegcvtxdg 27881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-dju 9707  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-xnn0 12356  df-z 12370  df-uz 12633  df-xadd 12899  df-fz 13290  df-fzo 13433  df-hash 14095  df-word 14267  df-concat 14323  df-s1 14350  df-s2 14610  df-s3 14611  df-s4 14612  df-s5 14613  df-s6 14614  df-s7 14615  df-vtx 27417  df-iedg 27418  df-vtxdg 27882
This theorem is referenced by:  konigsberglem4  28668
  Copyright terms: Public domain W3C validator