MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem3 Structured version   Visualization version   GIF version

Theorem konigsberglem3 30120
Description: Lemma 3 for konigsberg 30123: Vertex 3 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
konigsberg.g 𝐺 = βŸ¨π‘‰, 𝐸⟩
Assertion
Ref Expression
konigsberglem3 ((VtxDegβ€˜πΊ)β€˜3) = 3

Proof of Theorem konigsberglem3
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ovex 7450 . . . . 5 (0...3) ∈ V
2 s6cli 14867 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word V
32elexi 3484 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ V
41, 3opvtxfvi 28878 . . . 4 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = (0...3)
54eqcomi 2734 . . 3 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)
6 3nn0 12520 . . . 4 3 ∈ β„•0
7 nn0fz0 13631 . . . 4 (3 ∈ β„•0 ↔ 3 ∈ (0...3))
86, 7mpbi 229 . . 3 3 ∈ (0...3)
91, 3opiedgfvi 28879 . . . 4 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©
109eqcomi 2734 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)
11 s1cli 14587 . . . 4 βŸ¨β€œ{2, 3}β€βŸ© ∈ Word V
12 df-s7 14836 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
13 eqid 2725 . . . . 5 (0...3) = (0...3)
14 eqid 2725 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
15 eqid 2725 . . . . 5 ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ© = ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©
1613, 14, 15konigsbergssiedgw 30116 . . . 4 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
172, 11, 12, 16mp3an 1457 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
18 s5cli 14866 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word V
1918elexi 3484 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ V
201, 19opvtxfvi 28878 . . . . . 6 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = (0...3)
2120eqcomi 2734 . . . . 5 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)
221, 19opiedgfvi 28879 . . . . . 6 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©
2322eqcomi 2734 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)
24 s2cli 14863 . . . . . 6 βŸ¨β€œ{2, 3} {2, 3}β€βŸ© ∈ Word V
25 s5s2 14918 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3} {2, 3}β€βŸ©)
2613, 14, 15konigsbergssiedgw 30116 . . . . . 6 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
2718, 24, 25, 26mp3an 1457 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
28 s4cli 14865 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word V
2928elexi 3484 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ V
301, 29opvtxfvi 28878 . . . . . . 7 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = (0...3)
3130eqcomi 2734 . . . . . 6 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)
321, 29opiedgfvi 28879 . . . . . . 7 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©
3332eqcomi 2734 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)
34 s3cli 14864 . . . . . . 7 βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
35 s4s3 14914 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ©)
3613, 14, 15konigsbergssiedgw 30116 . . . . . . 7 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
3728, 34, 35, 36mp3an 1457 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
38 s3cli 14864 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word V
3938elexi 3484 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ V
401, 39opvtxfvi 28878 . . . . . . . 8 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = (0...3)
4140eqcomi 2734 . . . . . . 7 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)
421, 39opiedgfvi 28879 . . . . . . . 8 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©
4342eqcomi 2734 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)
44 s4cli 14865 . . . . . . . 8 βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
45 s3s4 14916 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
4613, 14, 15konigsbergssiedgw 30116 . . . . . . . 8 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
4738, 44, 45, 46mp3an 1457 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
48 s2cli 14863 . . . . . . . . . . . 12 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word V
4948elexi 3484 . . . . . . . . . . 11 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ V
501, 49opvtxfvi 28878 . . . . . . . . . 10 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = (0...3)
5150eqcomi 2734 . . . . . . . . 9 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)
521, 49opiedgfvi 28879 . . . . . . . . . 10 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2}β€βŸ©
5352eqcomi 2734 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)
54 s5cli 14866 . . . . . . . . . 10 βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
55 s2s5 14917 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
5613, 14, 15konigsbergssiedgw 30116 . . . . . . . . . 10 ((βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
5748, 54, 55, 56mp3an 1457 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
58 s1cli 14587 . . . . . . . . . . . . 13 βŸ¨β€œ{0, 1}β€βŸ© ∈ Word V
5958elexi 3484 . . . . . . . . . . . 12 βŸ¨β€œ{0, 1}β€βŸ© ∈ V
601, 59opvtxfvi 28878 . . . . . . . . . . 11 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = (0...3)
6160eqcomi 2734 . . . . . . . . . 10 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)
621, 59opiedgfvi 28879 . . . . . . . . . . 11 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1}β€βŸ©
6362eqcomi 2734 . . . . . . . . . 10 βŸ¨β€œ{0, 1}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)
64 s6cli 14867 . . . . . . . . . . 11 βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
65 s1s6 14910 . . . . . . . . . . 11 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
6613, 14, 15konigsbergssiedgw 30116 . . . . . . . . . . 11 ((βŸ¨β€œ{0, 1}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
6758, 64, 65, 66mp3an 1457 . . . . . . . . . 10 βŸ¨β€œ{0, 1}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
68 0ex 5307 . . . . . . . . . . . . 13 βˆ… ∈ V
691, 68opvtxfvi 28878 . . . . . . . . . . . 12 (Vtxβ€˜βŸ¨(0...3), βˆ…βŸ©) = (0...3)
7069eqcomi 2734 . . . . . . . . . . 11 (0...3) = (Vtxβ€˜βŸ¨(0...3), βˆ…βŸ©)
711, 68opiedgfvi 28879 . . . . . . . . . . . 12 (iEdgβ€˜βŸ¨(0...3), βˆ…βŸ©) = βˆ…
7271eqcomi 2734 . . . . . . . . . . 11 βˆ… = (iEdgβ€˜βŸ¨(0...3), βˆ…βŸ©)
73 wrd0 14521 . . . . . . . . . . 11 βˆ… ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
74 eqid 2725 . . . . . . . . . . . 12 βˆ… = βˆ…
7570, 72vtxdg0e 29344 . . . . . . . . . . . 12 ((3 ∈ (0...3) ∧ βˆ… = βˆ…) β†’ ((VtxDegβ€˜βŸ¨(0...3), βˆ…βŸ©)β€˜3) = 0)
768, 74, 75mp2an 690 . . . . . . . . . . 11 ((VtxDegβ€˜βŸ¨(0...3), βˆ…βŸ©)β€˜3) = 0
77 0elfz 13630 . . . . . . . . . . . 12 (3 ∈ β„•0 β†’ 0 ∈ (0...3))
786, 77ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...3)
79 3ne0 12348 . . . . . . . . . . . 12 3 β‰  0
8079necomi 2985 . . . . . . . . . . 11 0 β‰  3
81 1nn0 12518 . . . . . . . . . . . 12 1 ∈ β„•0
82 1le3 12454 . . . . . . . . . . . 12 1 ≀ 3
83 elfz2nn0 13624 . . . . . . . . . . . 12 (1 ∈ (0...3) ↔ (1 ∈ β„•0 ∧ 3 ∈ β„•0 ∧ 1 ≀ 3))
8481, 6, 82, 83mpbir3an 1338 . . . . . . . . . . 11 1 ∈ (0...3)
85 1re 11244 . . . . . . . . . . . 12 1 ∈ ℝ
86 1lt3 12415 . . . . . . . . . . . 12 1 < 3
8785, 86ltneii 11357 . . . . . . . . . . 11 1 β‰  3
88 s0s1 14905 . . . . . . . . . . . 12 βŸ¨β€œ{0, 1}β€βŸ© = (βˆ… ++ βŸ¨β€œ{0, 1}β€βŸ©)
8962, 88eqtri 2753 . . . . . . . . . . 11 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = (βˆ… ++ βŸ¨β€œ{0, 1}β€βŸ©)
9070, 8, 72, 73, 76, 60, 78, 80, 84, 87, 89vdegp1ai 29406 . . . . . . . . . 10 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)β€˜3) = 0
91 2nn0 12519 . . . . . . . . . . 11 2 ∈ β„•0
92 2re 12316 . . . . . . . . . . . 12 2 ∈ ℝ
93 3re 12322 . . . . . . . . . . . 12 3 ∈ ℝ
94 2lt3 12414 . . . . . . . . . . . 12 2 < 3
9592, 93, 94ltleii 11367 . . . . . . . . . . 11 2 ≀ 3
96 elfz2nn0 13624 . . . . . . . . . . 11 (2 ∈ (0...3) ↔ (2 ∈ β„•0 ∧ 3 ∈ β„•0 ∧ 2 ≀ 3))
9791, 6, 95, 96mpbir3an 1338 . . . . . . . . . 10 2 ∈ (0...3)
9892, 94ltneii 11357 . . . . . . . . . 10 2 β‰  3
99 df-s2 14831 . . . . . . . . . . 11 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2}β€βŸ©)
10052, 99eqtri 2753 . . . . . . . . . 10 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2}β€βŸ©)
10161, 8, 63, 67, 90, 50, 78, 80, 97, 98, 100vdegp1ai 29406 . . . . . . . . 9 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)β€˜3) = 0
102 df-s3 14832 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3}β€βŸ©)
10342, 102eqtri 2753 . . . . . . . . 9 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3}β€βŸ©)
10451, 8, 53, 57, 101, 40, 78, 80, 103vdegp1ci 29408 . . . . . . . 8 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)β€˜3) = (0 + 1)
105 0p1e1 12364 . . . . . . . 8 (0 + 1) = 1
106104, 105eqtri 2753 . . . . . . 7 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)β€˜3) = 1
107 df-s4 14833 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
10832, 107eqtri 2753 . . . . . . 7 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
10941, 8, 43, 47, 106, 30, 84, 87, 97, 98, 108vdegp1ai 29406 . . . . . 6 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)β€˜3) = 1
110 df-s5 14834 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
11122, 110eqtri 2753 . . . . . 6 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
11231, 8, 33, 37, 109, 20, 84, 87, 97, 98, 111vdegp1ai 29406 . . . . 5 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)β€˜3) = 1
113 df-s6 14835 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
1149, 113eqtri 2753 . . . . 5 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
11521, 8, 23, 27, 112, 4, 97, 98, 114vdegp1ci 29408 . . . 4 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)β€˜3) = (1 + 1)
116 1p1e2 12367 . . . 4 (1 + 1) = 2
117115, 116eqtri 2753 . . 3 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)β€˜3) = 2
118 konigsberg.v . . . 4 𝑉 = (0...3)
119 konigsberg.e . . . 4 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
120 konigsberg.g . . . 4 𝐺 = βŸ¨π‘‰, 𝐸⟩
121118, 119, 120konigsbergvtx 30112 . . 3 (Vtxβ€˜πΊ) = (0...3)
122118, 119, 120konigsbergiedg 30113 . . . 4 (iEdgβ€˜πΊ) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
123122, 12eqtri 2753 . . 3 (iEdgβ€˜πΊ) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
1245, 8, 10, 17, 117, 121, 97, 98, 123vdegp1ci 29408 . 2 ((VtxDegβ€˜πΊ)β€˜3) = (2 + 1)
125 2p1e3 12384 . 2 (2 + 1) = 3
126124, 125eqtri 2753 1 ((VtxDegβ€˜πΊ)β€˜3) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463   βˆ– cdif 3942  βˆ…c0 4323  π’« cpw 4603  {csn 4629  {cpr 4631  βŸ¨cop 4635   class class class wbr 5148  β€˜cfv 6547  (class class class)co 7417  0cc0 11138  1c1 11139   + caddc 11141   ≀ cle 11279  2c2 12297  3c3 12298  β„•0cn0 12502  ...cfz 13516  β™―chash 14321  Word cword 14496   ++ cconcat 14552  βŸ¨β€œcs1 14577  βŸ¨β€œcs2 14824  βŸ¨β€œcs3 14825  βŸ¨β€œcs4 14826  βŸ¨β€œcs5 14827  βŸ¨β€œcs6 14828  βŸ¨β€œcs7 14829  Vtxcvtx 28865  iEdgciedg 28866  VtxDegcvtxdg 29335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-xadd 13125  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-concat 14553  df-s1 14578  df-s2 14831  df-s3 14832  df-s4 14833  df-s5 14834  df-s6 14835  df-s7 14836  df-vtx 28867  df-iedg 28868  df-vtxdg 29336
This theorem is referenced by:  konigsberglem4  30121
  Copyright terms: Public domain W3C validator