MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem2 Structured version   Visualization version   GIF version

Theorem konigsberglem2 28036
Description: Lemma 2 for konigsberg 28040: Vertex 1 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem2 ((VtxDeg‘𝐺)‘1) = 3

Proof of Theorem konigsberglem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7173 . . . 4 (0...3) ∈ V
2 s6cli 14237 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V
32elexi 3488 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ V
41, 3opvtxfvi 26800 . . 3 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (0...3)
54eqcomi 2831 . 2 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
6 1nn0 11901 . . 3 1 ∈ ℕ0
7 3nn0 11903 . . 3 3 ∈ ℕ0
8 1le3 11837 . . 3 1 ≤ 3
9 elfz2nn0 12993 . . 3 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
106, 7, 8, 9mpbir3an 1338 . 2 1 ∈ (0...3)
111, 3opiedgfvi 26801 . . 3 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩
1211eqcomi 2831 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
13 s1cli 13950 . . 3 ⟨“{2, 3}”⟩ ∈ Word V
14 df-s7 14206 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
15 eqid 2822 . . . 4 (0...3) = (0...3)
16 eqid 2822 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
17 eqid 2822 . . . 4 ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩ = ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩
1815, 16, 17konigsbergssiedgw 28033 . . 3 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V ∧ ⟨“{2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
192, 13, 14, 18mp3an 1458 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
20 s5cli 14236 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V
2120elexi 3488 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ V
221, 21opvtxfvi 26800 . . . 4 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (0...3)
2322eqcomi 2831 . . 3 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
241, 21opiedgfvi 26801 . . . 4 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩
2524eqcomi 2831 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
26 s2cli 14233 . . . 4 ⟨“{2, 3} {2, 3}”⟩ ∈ Word V
27 s5s2 14288 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)
2815, 16, 17konigsbergssiedgw 28033 . . . 4 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V ∧ ⟨“{2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2920, 26, 27, 28mp3an 1458 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
30 s4cli 14235 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V
3130elexi 3488 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ V
321, 31opvtxfvi 26800 . . . . . 6 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (0...3)
3332eqcomi 2831 . . . . 5 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
341, 31opiedgfvi 26801 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩
3534eqcomi 2831 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
36 s3cli 14234 . . . . . 6 ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
37 s4s3 14284 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)
3815, 16, 17konigsbergssiedgw 28033 . . . . . 6 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V ∧ ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
3930, 36, 37, 38mp3an 1458 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
40 s3cli 14234 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V
4140elexi 3488 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ V
421, 41opvtxfvi 26800 . . . . . . . 8 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (0...3)
4342eqcomi 2831 . . . . . . 7 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
441, 41opiedgfvi 26801 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3}”⟩
4544eqcomi 2831 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
46 s4cli 14235 . . . . . . . 8 ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
47 s3s4 14286 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)
4815, 16, 17konigsbergssiedgw 28033 . . . . . . . 8 ((⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V ∧ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4940, 46, 47, 48mp3an 1458 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
50 s2cli 14233 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ ∈ Word V
5150elexi 3488 . . . . . . . . . 10 ⟨“{0, 1} {0, 2}”⟩ ∈ V
521, 51opvtxfvi 26800 . . . . . . . . 9 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (0...3)
5352eqcomi 2831 . . . . . . . 8 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
541, 51opiedgfvi 26801 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = ⟨“{0, 1} {0, 2}”⟩
5554eqcomi 2831 . . . . . . . 8 ⟨“{0, 1} {0, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
56 s5cli 14236 . . . . . . . . 9 ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
57 s2s5 14287 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
5815, 16, 17konigsbergssiedgw 28033 . . . . . . . . 9 ((⟨“{0, 1} {0, 2}”⟩ ∈ Word V ∧ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
5950, 56, 57, 58mp3an 1458 . . . . . . . 8 ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
60 s1cli 13950 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ ∈ Word V
6160elexi 3488 . . . . . . . . . . 11 ⟨“{0, 1}”⟩ ∈ V
621, 61opvtxfvi 26800 . . . . . . . . . 10 (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (0...3)
6362eqcomi 2831 . . . . . . . . 9 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
641, 61opiedgfvi 26801 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = ⟨“{0, 1}”⟩
6564eqcomi 2831 . . . . . . . . 9 ⟨“{0, 1}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
66 s6cli 14237 . . . . . . . . . 10 ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
67 s1s6 14280 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
6815, 16, 17konigsbergssiedgw 28033 . . . . . . . . . 10 ((⟨“{0, 1}”⟩ ∈ Word V ∧ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6960, 66, 67, 68mp3an 1458 . . . . . . . . 9 ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
70 0ex 5187 . . . . . . . . . . . . 13 ∅ ∈ V
711, 70opvtxfvi 26800 . . . . . . . . . . . 12 (Vtx‘⟨(0...3), ∅⟩) = (0...3)
7271eqcomi 2831 . . . . . . . . . . 11 (0...3) = (Vtx‘⟨(0...3), ∅⟩)
731, 70opiedgfvi 26801 . . . . . . . . . . . 12 (iEdg‘⟨(0...3), ∅⟩) = ∅
7473eqcomi 2831 . . . . . . . . . . 11 ∅ = (iEdg‘⟨(0...3), ∅⟩)
75 wrd0 13882 . . . . . . . . . . 11 ∅ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
76 eqid 2822 . . . . . . . . . . . 12 ∅ = ∅
7772, 74vtxdg0e 27262 . . . . . . . . . . . 12 ((1 ∈ (0...3) ∧ ∅ = ∅) → ((VtxDeg‘⟨(0...3), ∅⟩)‘1) = 0)
7810, 76, 77mp2an 691 . . . . . . . . . . 11 ((VtxDeg‘⟨(0...3), ∅⟩)‘1) = 0
79 0elfz 12999 . . . . . . . . . . . 12 (3 ∈ ℕ0 → 0 ∈ (0...3))
807, 79ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...3)
81 0ne1 11696 . . . . . . . . . . 11 0 ≠ 1
82 s0s1 14275 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ = (∅ ++ ⟨“{0, 1}”⟩)
8364, 82eqtri 2845 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (∅ ++ ⟨“{0, 1}”⟩)
8472, 10, 74, 75, 78, 62, 80, 81, 83vdegp1ci 27326 . . . . . . . . . 10 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘1) = (0 + 1)
85 0p1e1 11747 . . . . . . . . . 10 (0 + 1) = 1
8684, 85eqtri 2845 . . . . . . . . 9 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘1) = 1
87 2nn0 11902 . . . . . . . . . 10 2 ∈ ℕ0
88 2re 11699 . . . . . . . . . . 11 2 ∈ ℝ
89 3re 11705 . . . . . . . . . . 11 3 ∈ ℝ
90 2lt3 11797 . . . . . . . . . . 11 2 < 3
9188, 89, 90ltleii 10752 . . . . . . . . . 10 2 ≤ 3
92 elfz2nn0 12993 . . . . . . . . . 10 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
9387, 7, 91, 92mpbir3an 1338 . . . . . . . . 9 2 ∈ (0...3)
94 1ne2 11833 . . . . . . . . . 10 1 ≠ 2
9594necomi 3065 . . . . . . . . 9 2 ≠ 1
96 df-s2 14201 . . . . . . . . . 10 ⟨“{0, 1} {0, 2}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
9754, 96eqtri 2845 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
9863, 10, 65, 69, 86, 52, 80, 81, 93, 95, 97vdegp1ai 27324 . . . . . . . 8 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)‘1) = 1
99 nn0fz0 13000 . . . . . . . . 9 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
1007, 99mpbi 233 . . . . . . . 8 3 ∈ (0...3)
101 1re 10630 . . . . . . . . 9 1 ∈ ℝ
102 1lt3 11798 . . . . . . . . 9 1 < 3
103101, 102gtneii 10741 . . . . . . . 8 3 ≠ 1
104 df-s3 14202 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10544, 104eqtri 2845 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10653, 10, 55, 59, 98, 42, 80, 81, 100, 103, 105vdegp1ai 27324 . . . . . . 7 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘1) = 1
107 df-s4 14203 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10834, 107eqtri 2845 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10943, 10, 45, 49, 106, 32, 93, 95, 108vdegp1bi 27325 . . . . . 6 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘1) = (1 + 1)
110 1p1e2 11750 . . . . . 6 (1 + 1) = 2
111109, 110eqtri 2845 . . . . 5 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘1) = 2
112 df-s5 14204 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11324, 112eqtri 2845 . . . . 5 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11433, 10, 35, 39, 111, 22, 93, 95, 113vdegp1bi 27325 . . . 4 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘1) = (2 + 1)
115 2p1e3 11767 . . . 4 (2 + 1) = 3
116114, 115eqtri 2845 . . 3 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘1) = 3
117 df-s6 14205 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11811, 117eqtri 2845 . . 3 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11923, 10, 25, 29, 116, 4, 93, 95, 100, 103, 118vdegp1ai 27324 . 2 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘1) = 3
120 konigsberg.v . . 3 𝑉 = (0...3)
121 konigsberg.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
122 konigsberg.g . . 3 𝐺 = ⟨𝑉, 𝐸
123120, 121, 122konigsbergvtx 28029 . 2 (Vtx‘𝐺) = (0...3)
124120, 121, 122konigsbergiedg 28030 . . 3 (iEdg‘𝐺) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
125124, 14eqtri 2845 . 2 (iEdg‘𝐺) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
1265, 10, 12, 19, 119, 123, 93, 95, 100, 103, 125vdegp1ai 27324 1 ((VtxDeg‘𝐺)‘1) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2114  {crab 3134  Vcvv 3469  cdif 3905  c0 4265  𝒫 cpw 4511  {csn 4539  {cpr 4541  cop 4545   class class class wbr 5042  cfv 6334  (class class class)co 7140  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  2c2 11680  3c3 11681  0cn0 11885  ...cfz 12885  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940  ⟨“cs2 14194  ⟨“cs3 14195  ⟨“cs4 14196  ⟨“cs5 14197  ⟨“cs6 14198  ⟨“cs7 14199  Vtxcvtx 26787  iEdgciedg 26788  VtxDegcvtxdg 27253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-s4 14203  df-s5 14204  df-s6 14205  df-s7 14206  df-vtx 26789  df-iedg 26790  df-vtxdg 27254
This theorem is referenced by:  konigsberglem4  28038
  Copyright terms: Public domain W3C validator