MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem2 Structured version   Visualization version   GIF version

Theorem konigsberglem2 30272
Description: Lemma 2 for konigsberg 30276: Vertex 1 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem2 ((VtxDeg‘𝐺)‘1) = 3

Proof of Theorem konigsberglem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . . 4 (0...3) ∈ V
2 s6cli 14923 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V
32elexi 3503 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ V
41, 3opvtxfvi 29026 . . 3 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (0...3)
54eqcomi 2746 . 2 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
6 1nn0 12542 . . 3 1 ∈ ℕ0
7 3nn0 12544 . . 3 3 ∈ ℕ0
8 1le3 12478 . . 3 1 ≤ 3
9 elfz2nn0 13658 . . 3 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
106, 7, 8, 9mpbir3an 1342 . 2 1 ∈ (0...3)
111, 3opiedgfvi 29027 . . 3 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩
1211eqcomi 2746 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
13 s1cli 14643 . . 3 ⟨“{2, 3}”⟩ ∈ Word V
14 df-s7 14892 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
15 eqid 2737 . . . 4 (0...3) = (0...3)
16 eqid 2737 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
17 eqid 2737 . . . 4 ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩ = ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩
1815, 16, 17konigsbergssiedgw 30269 . . 3 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V ∧ ⟨“{2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
192, 13, 14, 18mp3an 1463 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
20 s5cli 14922 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V
2120elexi 3503 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ V
221, 21opvtxfvi 29026 . . . 4 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (0...3)
2322eqcomi 2746 . . 3 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
241, 21opiedgfvi 29027 . . . 4 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩
2524eqcomi 2746 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
26 s2cli 14919 . . . 4 ⟨“{2, 3} {2, 3}”⟩ ∈ Word V
27 s5s2 14974 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)
2815, 16, 17konigsbergssiedgw 30269 . . . 4 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V ∧ ⟨“{2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2920, 26, 27, 28mp3an 1463 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
30 s4cli 14921 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V
3130elexi 3503 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ V
321, 31opvtxfvi 29026 . . . . . 6 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (0...3)
3332eqcomi 2746 . . . . 5 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
341, 31opiedgfvi 29027 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩
3534eqcomi 2746 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
36 s3cli 14920 . . . . . 6 ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
37 s4s3 14970 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)
3815, 16, 17konigsbergssiedgw 30269 . . . . . 6 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V ∧ ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
3930, 36, 37, 38mp3an 1463 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
40 s3cli 14920 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V
4140elexi 3503 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ V
421, 41opvtxfvi 29026 . . . . . . . 8 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (0...3)
4342eqcomi 2746 . . . . . . 7 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
441, 41opiedgfvi 29027 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3}”⟩
4544eqcomi 2746 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
46 s4cli 14921 . . . . . . . 8 ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
47 s3s4 14972 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)
4815, 16, 17konigsbergssiedgw 30269 . . . . . . . 8 ((⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V ∧ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4940, 46, 47, 48mp3an 1463 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
50 s2cli 14919 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ ∈ Word V
5150elexi 3503 . . . . . . . . . 10 ⟨“{0, 1} {0, 2}”⟩ ∈ V
521, 51opvtxfvi 29026 . . . . . . . . 9 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (0...3)
5352eqcomi 2746 . . . . . . . 8 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
541, 51opiedgfvi 29027 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = ⟨“{0, 1} {0, 2}”⟩
5554eqcomi 2746 . . . . . . . 8 ⟨“{0, 1} {0, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
56 s5cli 14922 . . . . . . . . 9 ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
57 s2s5 14973 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
5815, 16, 17konigsbergssiedgw 30269 . . . . . . . . 9 ((⟨“{0, 1} {0, 2}”⟩ ∈ Word V ∧ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
5950, 56, 57, 58mp3an 1463 . . . . . . . 8 ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
60 s1cli 14643 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ ∈ Word V
6160elexi 3503 . . . . . . . . . . 11 ⟨“{0, 1}”⟩ ∈ V
621, 61opvtxfvi 29026 . . . . . . . . . 10 (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (0...3)
6362eqcomi 2746 . . . . . . . . 9 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
641, 61opiedgfvi 29027 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = ⟨“{0, 1}”⟩
6564eqcomi 2746 . . . . . . . . 9 ⟨“{0, 1}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
66 s6cli 14923 . . . . . . . . . 10 ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
67 s1s6 14966 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
6815, 16, 17konigsbergssiedgw 30269 . . . . . . . . . 10 ((⟨“{0, 1}”⟩ ∈ Word V ∧ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6960, 66, 67, 68mp3an 1463 . . . . . . . . 9 ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
70 0ex 5307 . . . . . . . . . . . . 13 ∅ ∈ V
711, 70opvtxfvi 29026 . . . . . . . . . . . 12 (Vtx‘⟨(0...3), ∅⟩) = (0...3)
7271eqcomi 2746 . . . . . . . . . . 11 (0...3) = (Vtx‘⟨(0...3), ∅⟩)
731, 70opiedgfvi 29027 . . . . . . . . . . . 12 (iEdg‘⟨(0...3), ∅⟩) = ∅
7473eqcomi 2746 . . . . . . . . . . 11 ∅ = (iEdg‘⟨(0...3), ∅⟩)
75 wrd0 14577 . . . . . . . . . . 11 ∅ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
76 eqid 2737 . . . . . . . . . . . 12 ∅ = ∅
7772, 74vtxdg0e 29492 . . . . . . . . . . . 12 ((1 ∈ (0...3) ∧ ∅ = ∅) → ((VtxDeg‘⟨(0...3), ∅⟩)‘1) = 0)
7810, 76, 77mp2an 692 . . . . . . . . . . 11 ((VtxDeg‘⟨(0...3), ∅⟩)‘1) = 0
79 0elfz 13664 . . . . . . . . . . . 12 (3 ∈ ℕ0 → 0 ∈ (0...3))
807, 79ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...3)
81 0ne1 12337 . . . . . . . . . . 11 0 ≠ 1
82 s0s1 14961 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ = (∅ ++ ⟨“{0, 1}”⟩)
8364, 82eqtri 2765 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (∅ ++ ⟨“{0, 1}”⟩)
8472, 10, 74, 75, 78, 62, 80, 81, 83vdegp1ci 29556 . . . . . . . . . 10 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘1) = (0 + 1)
85 0p1e1 12388 . . . . . . . . . 10 (0 + 1) = 1
8684, 85eqtri 2765 . . . . . . . . 9 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘1) = 1
87 2nn0 12543 . . . . . . . . . 10 2 ∈ ℕ0
88 2re 12340 . . . . . . . . . . 11 2 ∈ ℝ
89 3re 12346 . . . . . . . . . . 11 3 ∈ ℝ
90 2lt3 12438 . . . . . . . . . . 11 2 < 3
9188, 89, 90ltleii 11384 . . . . . . . . . 10 2 ≤ 3
92 elfz2nn0 13658 . . . . . . . . . 10 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
9387, 7, 91, 92mpbir3an 1342 . . . . . . . . 9 2 ∈ (0...3)
94 1ne2 12474 . . . . . . . . . 10 1 ≠ 2
9594necomi 2995 . . . . . . . . 9 2 ≠ 1
96 df-s2 14887 . . . . . . . . . 10 ⟨“{0, 1} {0, 2}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
9754, 96eqtri 2765 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
9863, 10, 65, 69, 86, 52, 80, 81, 93, 95, 97vdegp1ai 29554 . . . . . . . 8 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)‘1) = 1
99 nn0fz0 13665 . . . . . . . . 9 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
1007, 99mpbi 230 . . . . . . . 8 3 ∈ (0...3)
101 1re 11261 . . . . . . . . 9 1 ∈ ℝ
102 1lt3 12439 . . . . . . . . 9 1 < 3
103101, 102gtneii 11373 . . . . . . . 8 3 ≠ 1
104 df-s3 14888 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10544, 104eqtri 2765 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10653, 10, 55, 59, 98, 42, 80, 81, 100, 103, 105vdegp1ai 29554 . . . . . . 7 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘1) = 1
107 df-s4 14889 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10834, 107eqtri 2765 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10943, 10, 45, 49, 106, 32, 93, 95, 108vdegp1bi 29555 . . . . . 6 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘1) = (1 + 1)
110 1p1e2 12391 . . . . . 6 (1 + 1) = 2
111109, 110eqtri 2765 . . . . 5 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘1) = 2
112 df-s5 14890 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11324, 112eqtri 2765 . . . . 5 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11433, 10, 35, 39, 111, 22, 93, 95, 113vdegp1bi 29555 . . . 4 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘1) = (2 + 1)
115 2p1e3 12408 . . . 4 (2 + 1) = 3
116114, 115eqtri 2765 . . 3 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘1) = 3
117 df-s6 14891 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11811, 117eqtri 2765 . . 3 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11923, 10, 25, 29, 116, 4, 93, 95, 100, 103, 118vdegp1ai 29554 . 2 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘1) = 3
120 konigsberg.v . . 3 𝑉 = (0...3)
121 konigsberg.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
122 konigsberg.g . . 3 𝐺 = ⟨𝑉, 𝐸
123120, 121, 122konigsbergvtx 30265 . 2 (Vtx‘𝐺) = (0...3)
124120, 121, 122konigsbergiedg 30266 . . 3 (iEdg‘𝐺) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
125124, 14eqtri 2765 . 2 (iEdg‘𝐺) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
1265, 10, 12, 19, 119, 123, 93, 95, 100, 103, 125vdegp1ai 29554 1 ((VtxDeg‘𝐺)‘1) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cdif 3948  c0 4333  𝒫 cpw 4600  {csn 4626  {cpr 4628  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cle 11296  2c2 12321  3c3 12322  0cn0 12526  ...cfz 13547  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633  ⟨“cs2 14880  ⟨“cs3 14881  ⟨“cs4 14882  ⟨“cs5 14883  ⟨“cs6 14884  ⟨“cs7 14885  Vtxcvtx 29013  iEdgciedg 29014  VtxDegcvtxdg 29483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-xadd 13155  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-s4 14889  df-s5 14890  df-s6 14891  df-s7 14892  df-vtx 29015  df-iedg 29016  df-vtxdg 29484
This theorem is referenced by:  konigsberglem4  30274
  Copyright terms: Public domain W3C validator