MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem2 Structured version   Visualization version   GIF version

Theorem konigsberglem2 29770
Description: Lemma 2 for konigsberg 29774: Vertex 1 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
konigsberg.g 𝐺 = βŸ¨π‘‰, 𝐸⟩
Assertion
Ref Expression
konigsberglem2 ((VtxDegβ€˜πΊ)β€˜1) = 3

Proof of Theorem konigsberglem2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ovex 7445 . . . 4 (0...3) ∈ V
2 s6cli 14840 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word V
32elexi 3493 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ V
41, 3opvtxfvi 28533 . . 3 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = (0...3)
54eqcomi 2740 . 2 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)
6 1nn0 12493 . . 3 1 ∈ β„•0
7 3nn0 12495 . . 3 3 ∈ β„•0
8 1le3 12429 . . 3 1 ≀ 3
9 elfz2nn0 13597 . . 3 (1 ∈ (0...3) ↔ (1 ∈ β„•0 ∧ 3 ∈ β„•0 ∧ 1 ≀ 3))
106, 7, 8, 9mpbir3an 1340 . 2 1 ∈ (0...3)
111, 3opiedgfvi 28534 . . 3 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©
1211eqcomi 2740 . 2 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)
13 s1cli 14560 . . 3 βŸ¨β€œ{2, 3}β€βŸ© ∈ Word V
14 df-s7 14809 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
15 eqid 2731 . . . 4 (0...3) = (0...3)
16 eqid 2731 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
17 eqid 2731 . . . 4 ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ© = ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©
1815, 16, 17konigsbergssiedgw 29767 . . 3 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
192, 13, 14, 18mp3an 1460 . 2 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
20 s5cli 14839 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word V
2120elexi 3493 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ V
221, 21opvtxfvi 28533 . . . 4 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = (0...3)
2322eqcomi 2740 . . 3 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)
241, 21opiedgfvi 28534 . . . 4 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©
2524eqcomi 2740 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)
26 s2cli 14836 . . . 4 βŸ¨β€œ{2, 3} {2, 3}β€βŸ© ∈ Word V
27 s5s2 14891 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3} {2, 3}β€βŸ©)
2815, 16, 17konigsbergssiedgw 29767 . . . 4 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
2920, 26, 27, 28mp3an 1460 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
30 s4cli 14838 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word V
3130elexi 3493 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ V
321, 31opvtxfvi 28533 . . . . . 6 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = (0...3)
3332eqcomi 2740 . . . . 5 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)
341, 31opiedgfvi 28534 . . . . . 6 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©
3534eqcomi 2740 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)
36 s3cli 14837 . . . . . 6 βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
37 s4s3 14887 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ©)
3815, 16, 17konigsbergssiedgw 29767 . . . . . 6 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
3930, 36, 37, 38mp3an 1460 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
40 s3cli 14837 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word V
4140elexi 3493 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ V
421, 41opvtxfvi 28533 . . . . . . . 8 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = (0...3)
4342eqcomi 2740 . . . . . . 7 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)
441, 41opiedgfvi 28534 . . . . . . . 8 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©
4544eqcomi 2740 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)
46 s4cli 14838 . . . . . . . 8 βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
47 s3s4 14889 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
4815, 16, 17konigsbergssiedgw 29767 . . . . . . . 8 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
4940, 46, 47, 48mp3an 1460 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
50 s2cli 14836 . . . . . . . . . . 11 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word V
5150elexi 3493 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ V
521, 51opvtxfvi 28533 . . . . . . . . 9 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = (0...3)
5352eqcomi 2740 . . . . . . . 8 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)
541, 51opiedgfvi 28534 . . . . . . . . 9 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2}β€βŸ©
5554eqcomi 2740 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)
56 s5cli 14839 . . . . . . . . 9 βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
57 s2s5 14890 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
5815, 16, 17konigsbergssiedgw 29767 . . . . . . . . 9 ((βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
5950, 56, 57, 58mp3an 1460 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
60 s1cli 14560 . . . . . . . . . . . 12 βŸ¨β€œ{0, 1}β€βŸ© ∈ Word V
6160elexi 3493 . . . . . . . . . . 11 βŸ¨β€œ{0, 1}β€βŸ© ∈ V
621, 61opvtxfvi 28533 . . . . . . . . . 10 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = (0...3)
6362eqcomi 2740 . . . . . . . . 9 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)
641, 61opiedgfvi 28534 . . . . . . . . . 10 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1}β€βŸ©
6564eqcomi 2740 . . . . . . . . 9 βŸ¨β€œ{0, 1}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)
66 s6cli 14840 . . . . . . . . . 10 βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
67 s1s6 14883 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
6815, 16, 17konigsbergssiedgw 29767 . . . . . . . . . 10 ((βŸ¨β€œ{0, 1}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
6960, 66, 67, 68mp3an 1460 . . . . . . . . 9 βŸ¨β€œ{0, 1}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
70 0ex 5308 . . . . . . . . . . . . 13 βˆ… ∈ V
711, 70opvtxfvi 28533 . . . . . . . . . . . 12 (Vtxβ€˜βŸ¨(0...3), βˆ…βŸ©) = (0...3)
7271eqcomi 2740 . . . . . . . . . . 11 (0...3) = (Vtxβ€˜βŸ¨(0...3), βˆ…βŸ©)
731, 70opiedgfvi 28534 . . . . . . . . . . . 12 (iEdgβ€˜βŸ¨(0...3), βˆ…βŸ©) = βˆ…
7473eqcomi 2740 . . . . . . . . . . 11 βˆ… = (iEdgβ€˜βŸ¨(0...3), βˆ…βŸ©)
75 wrd0 14494 . . . . . . . . . . 11 βˆ… ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
76 eqid 2731 . . . . . . . . . . . 12 βˆ… = βˆ…
7772, 74vtxdg0e 28995 . . . . . . . . . . . 12 ((1 ∈ (0...3) ∧ βˆ… = βˆ…) β†’ ((VtxDegβ€˜βŸ¨(0...3), βˆ…βŸ©)β€˜1) = 0)
7810, 76, 77mp2an 689 . . . . . . . . . . 11 ((VtxDegβ€˜βŸ¨(0...3), βˆ…βŸ©)β€˜1) = 0
79 0elfz 13603 . . . . . . . . . . . 12 (3 ∈ β„•0 β†’ 0 ∈ (0...3))
807, 79ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...3)
81 0ne1 12288 . . . . . . . . . . 11 0 β‰  1
82 s0s1 14878 . . . . . . . . . . . 12 βŸ¨β€œ{0, 1}β€βŸ© = (βˆ… ++ βŸ¨β€œ{0, 1}β€βŸ©)
8364, 82eqtri 2759 . . . . . . . . . . 11 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = (βˆ… ++ βŸ¨β€œ{0, 1}β€βŸ©)
8472, 10, 74, 75, 78, 62, 80, 81, 83vdegp1ci 29059 . . . . . . . . . 10 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)β€˜1) = (0 + 1)
85 0p1e1 12339 . . . . . . . . . 10 (0 + 1) = 1
8684, 85eqtri 2759 . . . . . . . . 9 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)β€˜1) = 1
87 2nn0 12494 . . . . . . . . . 10 2 ∈ β„•0
88 2re 12291 . . . . . . . . . . 11 2 ∈ ℝ
89 3re 12297 . . . . . . . . . . 11 3 ∈ ℝ
90 2lt3 12389 . . . . . . . . . . 11 2 < 3
9188, 89, 90ltleii 11342 . . . . . . . . . 10 2 ≀ 3
92 elfz2nn0 13597 . . . . . . . . . 10 (2 ∈ (0...3) ↔ (2 ∈ β„•0 ∧ 3 ∈ β„•0 ∧ 2 ≀ 3))
9387, 7, 91, 92mpbir3an 1340 . . . . . . . . 9 2 ∈ (0...3)
94 1ne2 12425 . . . . . . . . . 10 1 β‰  2
9594necomi 2994 . . . . . . . . 9 2 β‰  1
96 df-s2 14804 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2}β€βŸ©)
9754, 96eqtri 2759 . . . . . . . . 9 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2}β€βŸ©)
9863, 10, 65, 69, 86, 52, 80, 81, 93, 95, 97vdegp1ai 29057 . . . . . . . 8 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)β€˜1) = 1
99 nn0fz0 13604 . . . . . . . . 9 (3 ∈ β„•0 ↔ 3 ∈ (0...3))
1007, 99mpbi 229 . . . . . . . 8 3 ∈ (0...3)
101 1re 11219 . . . . . . . . 9 1 ∈ ℝ
102 1lt3 12390 . . . . . . . . 9 1 < 3
103101, 102gtneii 11331 . . . . . . . 8 3 β‰  1
104 df-s3 14805 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3}β€βŸ©)
10544, 104eqtri 2759 . . . . . . . 8 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3}β€βŸ©)
10653, 10, 55, 59, 98, 42, 80, 81, 100, 103, 105vdegp1ai 29057 . . . . . . 7 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)β€˜1) = 1
107 df-s4 14806 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
10834, 107eqtri 2759 . . . . . . 7 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
10943, 10, 45, 49, 106, 32, 93, 95, 108vdegp1bi 29058 . . . . . 6 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)β€˜1) = (1 + 1)
110 1p1e2 12342 . . . . . 6 (1 + 1) = 2
111109, 110eqtri 2759 . . . . 5 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)β€˜1) = 2
112 df-s5 14807 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
11324, 112eqtri 2759 . . . . 5 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
11433, 10, 35, 39, 111, 22, 93, 95, 113vdegp1bi 29058 . . . 4 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)β€˜1) = (2 + 1)
115 2p1e3 12359 . . . 4 (2 + 1) = 3
116114, 115eqtri 2759 . . 3 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)β€˜1) = 3
117 df-s6 14808 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
11811, 117eqtri 2759 . . 3 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
11923, 10, 25, 29, 116, 4, 93, 95, 100, 103, 118vdegp1ai 29057 . 2 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)β€˜1) = 3
120 konigsberg.v . . 3 𝑉 = (0...3)
121 konigsberg.e . . 3 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
122 konigsberg.g . . 3 𝐺 = βŸ¨π‘‰, 𝐸⟩
123120, 121, 122konigsbergvtx 29763 . 2 (Vtxβ€˜πΊ) = (0...3)
124120, 121, 122konigsbergiedg 29764 . . 3 (iEdgβ€˜πΊ) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
125124, 14eqtri 2759 . 2 (iEdgβ€˜πΊ) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
1265, 10, 12, 19, 119, 123, 93, 95, 100, 103, 125vdegp1ai 29057 1 ((VtxDegβ€˜πΊ)β€˜1) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   ∈ wcel 2105  {crab 3431  Vcvv 3473   βˆ– cdif 3946  βˆ…c0 4323  π’« cpw 4603  {csn 4629  {cpr 4631  βŸ¨cop 4635   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412  0cc0 11113  1c1 11114   + caddc 11116   ≀ cle 11254  2c2 12272  3c3 12273  β„•0cn0 12477  ...cfz 13489  β™―chash 14295  Word cword 14469   ++ cconcat 14525  βŸ¨β€œcs1 14550  βŸ¨β€œcs2 14797  βŸ¨β€œcs3 14798  βŸ¨β€œcs4 14799  βŸ¨β€œcs5 14800  βŸ¨β€œcs6 14801  βŸ¨β€œcs7 14802  Vtxcvtx 28520  iEdgciedg 28521  VtxDegcvtxdg 28986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-oadd 8473  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-xadd 13098  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-concat 14526  df-s1 14551  df-s2 14804  df-s3 14805  df-s4 14806  df-s5 14807  df-s6 14808  df-s7 14809  df-vtx 28522  df-iedg 28523  df-vtxdg 28987
This theorem is referenced by:  konigsberglem4  29772
  Copyright terms: Public domain W3C validator