![]() |
Metamath
Proof Explorer Theorem List (p. 149 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | revrev 14801 | Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.) |
⊢ (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊) | ||
Syntax | creps 14802 | Extend class notation with words consisting of one repeated symbol. |
class repeatS | ||
Definition | df-reps 14803* | Definition to construct a word consisting of one repeated symbol, often called "repeated symbol word" for short in the following. (Contributed by Alexander van der Vekens, 4-Nov-2018.) |
⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | ||
Theorem | reps 14804* | Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) | ||
Theorem | repsundef 14805 | A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.) |
⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) | ||
Theorem | repsconst 14806 | Construct a function mapping a half-open range of nonnegative integers to a constant, see also fconstmpt 5750. (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆})) | ||
Theorem | repsf 14807 | The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) | ||
Theorem | repswsymb 14808 | The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆) | ||
Theorem | repsw 14809 | A function mapping a half-open range of nonnegative integers to a constant is a word consisting of one symbol repeated several times ("repeated symbol word"). (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉) | ||
Theorem | repswlen 14810 | The length of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁) | ||
Theorem | repsw0 14811 | The "repeated symbol word" of length 0. (Contributed by AV, 4-Nov-2018.) |
⊢ (𝑆 ∈ 𝑉 → (𝑆 repeatS 0) = ∅) | ||
Theorem | repsdf2 14812* | Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) | ||
Theorem | repswsymball 14813* | All the symbols of a "repeated symbol word" are the same. (Contributed by AV, 10-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑊 = (𝑆 repeatS (♯‘𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆)) | ||
Theorem | repswsymballbi 14814* | A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018.) |
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) | ||
Theorem | repswfsts 14815 | The first symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁)‘0) = 𝑆) | ||
Theorem | repswlsw 14816 | The last symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (lastS‘(𝑆 repeatS 𝑁)) = 𝑆) | ||
Theorem | repsw1 14817 | The "repeated symbol word" of length 1. (Contributed by AV, 4-Nov-2018.) |
⊢ (𝑆 ∈ 𝑉 → (𝑆 repeatS 1) = 〈“𝑆”〉) | ||
Theorem | repswswrd 14818 | A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption 𝑁 ≤ 𝐿 is required, because otherwise (𝐿 < 𝑁): ((𝑆 repeatS 𝐿) substr 〈𝑀, 𝑁〉) = ∅, but for M < N (𝑆 repeatS (𝑁 − 𝑀))) ≠ ∅! The proof is relatively long because the border cases (𝑀 = 𝑁, ¬ (𝑀..^𝑁) ⊆ (0..^𝐿) must have been considered. (Contributed by AV, 6-Nov-2018.) |
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → ((𝑆 repeatS 𝐿) substr 〈𝑀, 𝑁〉) = (𝑆 repeatS (𝑁 − 𝑀))) | ||
Theorem | repswpfx 14819 | A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿)) | ||
Theorem | repswccat 14820 | The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀))) | ||
Theorem | repswrevw 14821 | The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁)) | ||
A word/string can be regarded as "necklace" by connecting the two ends of the word/string together (see Wikipedia "Necklace (combinatorics)", https://en.wikipedia.org/wiki/Necklace_(combinatorics)). Two strings are regarded as the same necklace if one string can be rotated/circularly shifted/cyclically shifted to obtain the second string. To cope with words in the sense of necklaces, the rotation/cyclic shift cyclShift is defined as the basic operation, see df-csh 14823. The main theorems in this section are about counting the number of different necklaces resulting from cyclically shifting a given word, see cshwrepswhash1 17136 for words consisting of identical symbols and cshwshash 17138 for words having lengths which are prime numbers. | ||
Syntax | ccsh 14822 | Extend class notation with Cyclical Shifts. |
class cyclShift | ||
Definition | df-csh 14823* | Perform a cyclical shift for an arbitrary class. Meaningful only for words 𝑤 ∈ Word 𝑆 or at least functions over half-open ranges of nonnegative integers. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by Mario Carneiro/Alexander van der Vekens/ Gerard Lang, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | ||
Theorem | cshfn 14824* | Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018.) (Revised by AV, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
⊢ ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) | ||
Theorem | cshword 14825 | Perform a cyclical shift for a word. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by AV, 12-Oct-2022.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) | ||
Theorem | cshnz 14826 | A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.) |
⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) | ||
Theorem | 0csh0 14827 | Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
⊢ (∅ cyclShift 𝑁) = ∅ | ||
Theorem | cshw0 14828 | A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) | ||
Theorem | cshwmodn 14829 | Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))) | ||
Theorem | cshwsublen 14830 | Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))) | ||
Theorem | cshwn 14831 | A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) | ||
Theorem | cshwcl 14832 | A cyclically shifted word is a word over the same set as for the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 27-Oct-2018.) |
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑁) ∈ Word 𝑉) | ||
Theorem | cshwlen 14833 | The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)) | ||
Theorem | cshwf 14834 | A cyclically shifted word is a function from a half-open range of integers of the same length as the word as domain to the set of symbols for the word. (Contributed by AV, 12-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))⟶𝐴) | ||
Theorem | cshwfn 14835 | A cyclically shifted word is a function with a half-open range of integers of the same length as the word as domain. (Contributed by AV, 12-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊))) | ||
Theorem | cshwrn 14836 | The range of a cyclically shifted word is a subset of the set of symbols for the word. (Contributed by AV, 12-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝑉) | ||
Theorem | cshwidxmod 14837 | The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 13-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) (Proof shortened by AV, 12-Oct-2022.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))) | ||
Theorem | cshwidxmodr 14838 | The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼 − 𝑁) mod (♯‘𝑊))) = (𝑊‘𝐼)) | ||
Theorem | cshwidx0mod 14839 | The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N (modulo the length of the word) of the original word. (Contributed by AV, 30-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | ||
Theorem | cshwidx0 14840 | The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) | ||
Theorem | cshwidxm1 14841 | The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1))) | ||
Theorem | cshwidxm 14842 | The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) | ||
Theorem | cshwidxn 14843 | The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1))) | ||
Theorem | cshf1 14844 | Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021.) |
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1→𝐴) | ||
Theorem | cshinj 14845 | If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021.) |
⊢ ((𝐹 ∈ Word 𝐴 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun ◡𝐺)) | ||
Theorem | repswcshw 14846 | A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) (Proof shortened by AV, 16-Oct-2022.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)) | ||
Theorem | 2cshw 14847 | Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁))) | ||
Theorem | 2cshwid 14848 | Cyclically shifting a word two times resulting in the word itself. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑁)) = 𝑊) | ||
Theorem | lswcshw 14849 | The last symbol of a word cyclically shifted by N positions is the symbol at index (N-1) of the original word. (Contributed by AV, 21-Mar-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1))) | ||
Theorem | 2cshwcom 14850 | Cyclically shifting a word two times is commutative. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by Mario Carneiro/AV, 1-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift 𝑀) = ((𝑊 cyclShift 𝑀) cyclShift 𝑁)) | ||
Theorem | cshwleneq 14851 | If the results of cyclically shifting two words are equal, the length of the two words was equal. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑊) = (♯‘𝑈)) | ||
Theorem | 3cshw 14852 | Cyclically shifting a word three times results in a once cyclically shifted word under certain circumstances. (Contributed by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑀))) | ||
Theorem | cshweqdif2 14853 | If cyclically shifting two words (of the same length) results in the same word, cyclically shifting one of the words by the difference of the numbers of shifts results in the other word. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀 − 𝑁)) = 𝑊)) | ||
Theorem | cshweqdifid 14854 | If cyclically shifting a word by two positions results in the same word, cyclically shifting the word by the difference of these two positions results in the original word itself. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑀) → (𝑊 cyclShift (𝑀 − 𝑁)) = 𝑊)) | ||
Theorem | cshweqrep 14855* | If cyclically shifting a word by L position results in the word itself, the symbol at any position is repeated at multiples of L (modulo the length of the word) positions in the word. (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ∀𝑗 ∈ ℕ0 (𝑊‘𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (♯‘𝑊))))) | ||
Theorem | cshw1 14856* | If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0)) | ||
Theorem | cshw1repsw 14857 | If cyclically shifting a word by 1 position results in the word itself, the word is a "repeated symbol word". Remark: also "valid" for an empty word! (Contributed by AV, 8-Nov-2018.) (Proof shortened by AV, 10-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) | ||
Theorem | cshwsexa 14858* | The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof shortened by SN, 15-Jan-2025.) |
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | ||
Theorem | cshwsexaOLD 14859* | Obsolete version of cshwsexa 14858 as of 15-Jan-2025. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | ||
Theorem | 2cshwcshw 14860* | If a word is a cyclically shifted word, and a second word is the result of cyclically shifting the same word, then the second word is the result of cyclically shifting the first word. (Contributed by AV, 11-May-2018.) (Revised by AV, 12-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
⊢ ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) | ||
Theorem | scshwfzeqfzo 14861* | For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
⊢ ((𝑋 ∈ Word 𝑉 ∧ 𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)}) | ||
Theorem | cshwcshid 14862* | A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym 30049 and erclwwlknsym 30098. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
⊢ (𝜑 → 𝑦 ∈ Word 𝑉) & ⊢ (𝜑 → (♯‘𝑥) = (♯‘𝑦)) ⇒ ⊢ (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))) | ||
Theorem | cshwcsh2id 14863* | A cyclically shifted word can be reconstructed by cyclically shifting it again twice. Lemma for erclwwlktr 30050 and erclwwlkntr 30099. (Contributed by AV, 9-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
⊢ (𝜑 → 𝑧 ∈ Word 𝑉) & ⊢ (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ⇒ ⊢ (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) | ||
Theorem | cshimadifsn 14864 | The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐹 ∈ Word 𝑆 ∧ 𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁))) | ||
Theorem | cshimadifsn0 14865 | The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.) |
⊢ ((𝐹 ∈ Word 𝑆 ∧ 𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1)))) | ||
Theorem | wrdco 14866 | Mapping a word by a function. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊) ∈ Word 𝐵) | ||
Theorem | lenco 14867 | Length of a mapped word is unchanged. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) | ||
Theorem | s1co 14868 | Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) | ||
Theorem | revco 14869 | Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹 ∘ 𝑊))) | ||
Theorem | ccatco 14870 | Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹 ∘ 𝑆) ++ (𝐹 ∘ 𝑇))) | ||
Theorem | cshco 14871 | Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹 ∘ 𝑊) cyclShift 𝑁)) | ||
Theorem | swrdco 14872 | Mapping of words commutes with the substring operation. (Contributed by AV, 11-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈𝑀, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈𝑀, 𝑁〉)) | ||
Theorem | pfxco 14873 | Mapping of words commutes with the prefix operation. (Contributed by AV, 15-May-2020.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) | ||
Theorem | lswco 14874 | Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if 𝑊 = ∅, (𝐹‘∅) ≠ ∅ and ∅ ∈ 𝐴, because then (lastS‘(𝐹 ∘ 𝑊)) = (lastS‘∅) = ∅ ≠ (𝐹‘∅) = (𝐹(lastS‘𝑊)). (Contributed by AV, 11-Nov-2018.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) | ||
Theorem | repsco 14875 | Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.) |
⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) | ||
Syntax | cs2 14876 | Syntax for the length 2 word constructor. |
class 〈“𝐴𝐵”〉 | ||
Syntax | cs3 14877 | Syntax for the length 3 word constructor. |
class 〈“𝐴𝐵𝐶”〉 | ||
Syntax | cs4 14878 | Syntax for the length 4 word constructor. |
class 〈“𝐴𝐵𝐶𝐷”〉 | ||
Syntax | cs5 14879 | Syntax for the length 5 word constructor. |
class 〈“𝐴𝐵𝐶𝐷𝐸”〉 | ||
Syntax | cs6 14880 | Syntax for the length 6 word constructor. |
class 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 | ||
Syntax | cs7 14881 | Syntax for the length 7 word constructor. |
class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 | ||
Syntax | cs8 14882 | Syntax for the length 8 word constructor. |
class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 | ||
Definition | df-s2 14883 | Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | ||
Definition | df-s3 14884 | Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | ||
Definition | df-s4 14885 | Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | ||
Definition | df-s5 14886 | Define the length 5 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) | ||
Definition | df-s6 14887 | Define the length 6 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹”〉) | ||
Definition | df-s7 14888 | Define the length 7 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) | ||
Definition | df-s8 14889 | Define the length 8 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) | ||
Theorem | cats1cld 14890 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑇 ∈ Word 𝐴) | ||
Theorem | cats1co 14891 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝑆) = 𝑈) & ⊢ 𝑉 = (𝑈 ++ 〈“(𝐹‘𝑋)”〉) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝑇) = 𝑉) | ||
Theorem | cats1cli 14892 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V ⇒ ⊢ 𝑇 ∈ Word V | ||
Theorem | cats1fvn 14893 | The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) | ||
Theorem | cats1fv 14894 | A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 & ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑁 < 𝑀 ⇒ ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) | ||
Theorem | cats1len 14895 | The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝑇) = 𝑁 | ||
Theorem | cats1cat 14896 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝐴 ∈ Word V & ⊢ 𝑆 ∈ Word V & ⊢ 𝐶 = (𝐵 ++ 〈“𝑋”〉) & ⊢ 𝐵 = (𝐴 ++ 𝑆) ⇒ ⊢ 𝐶 = (𝐴 ++ 𝑇) | ||
Theorem | cats2cat 14897 | Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) |
⊢ 𝐵 ∈ Word V & ⊢ 𝐷 ∈ Word V & ⊢ 𝐴 = (𝐵 ++ 〈“𝑋”〉) & ⊢ 𝐶 = (〈“𝑌”〉 ++ 𝐷) ⇒ ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷) | ||
Theorem | s2eqd 14898 | Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) | ||
Theorem | s3eqd 14899 | Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) | ||
Theorem | s4eqd 14900 | Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |