| Metamath
Proof Explorer Theorem List (p. 149 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | repswpfx 14801 | A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿)) | ||
| Theorem | repswccat 14802 | The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀))) | ||
| Theorem | repswrevw 14803 | The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁)) | ||
A word/string can be regarded as "necklace" by connecting the two ends of the word/string together (see Wikipedia "Necklace (combinatorics)", https://en.wikipedia.org/wiki/Necklace_(combinatorics)). Two strings are regarded as the same necklace if one string can be rotated/circularly shifted/cyclically shifted to obtain the second string. To cope with words in the sense of necklaces, the rotation/cyclic shift cyclShift is defined as the basic operation, see df-csh 14805. The main theorems in this section are about counting the number of different necklaces resulting from cyclically shifting a given word, see cshwrepswhash1 17120 for words consisting of identical symbols and cshwshash 17122 for words having lengths which are prime numbers. | ||
| Syntax | ccsh 14804 | Extend class notation with Cyclical Shifts. |
| class cyclShift | ||
| Definition | df-csh 14805* | Perform a cyclical shift for an arbitrary class. Meaningful only for words 𝑤 ∈ Word 𝑆 or at least functions over half-open ranges of nonnegative integers. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by Mario Carneiro/Alexander van der Vekens/ Gerard Lang, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
| ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | ||
| Theorem | cshfn 14806* | Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018.) (Revised by AV, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
| ⊢ ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) | ||
| Theorem | cshword 14807 | Perform a cyclical shift for a word. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by AV, 12-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) | ||
| Theorem | cshnz 14808 | A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.) |
| ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) | ||
| Theorem | 0csh0 14809 | Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
| ⊢ (∅ cyclShift 𝑁) = ∅ | ||
| Theorem | cshw0 14810 | A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) | ||
| Theorem | cshwmodn 14811 | Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))) | ||
| Theorem | cshwsublen 14812 | Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))) | ||
| Theorem | cshwn 14813 | A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) | ||
| Theorem | cshwcl 14814 | A cyclically shifted word is a word over the same set as for the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 27-Oct-2018.) |
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑁) ∈ Word 𝑉) | ||
| Theorem | cshwlen 14815 | The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)) | ||
| Theorem | cshwf 14816 | A cyclically shifted word is a function from a half-open range of integers of the same length as the word as domain to the set of symbols for the word. (Contributed by AV, 12-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))⟶𝐴) | ||
| Theorem | cshwfn 14817 | A cyclically shifted word is a function with a half-open range of integers of the same length as the word as domain. (Contributed by AV, 12-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊))) | ||
| Theorem | cshwrn 14818 | The range of a cyclically shifted word is a subset of the set of symbols for the word. (Contributed by AV, 12-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝑉) | ||
| Theorem | cshwidxmod 14819 | The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 13-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) (Proof shortened by AV, 12-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))) | ||
| Theorem | cshwidxmodr 14820 | The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼 − 𝑁) mod (♯‘𝑊))) = (𝑊‘𝐼)) | ||
| Theorem | cshwidx0mod 14821 | The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N (modulo the length of the word) of the original word. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | ||
| Theorem | cshwidx0 14822 | The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) | ||
| Theorem | cshwidxm1 14823 | The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1))) | ||
| Theorem | cshwidxm 14824 | The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) | ||
| Theorem | cshwidxn 14825 | The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1))) | ||
| Theorem | cshf1 14826 | Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021.) |
| ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1→𝐴) | ||
| Theorem | cshinj 14827 | If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021.) |
| ⊢ ((𝐹 ∈ Word 𝐴 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun ◡𝐺)) | ||
| Theorem | repswcshw 14828 | A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) (Proof shortened by AV, 16-Oct-2022.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)) | ||
| Theorem | 2cshw 14829 | Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁))) | ||
| Theorem | 2cshwid 14830 | Cyclically shifting a word two times resulting in the word itself. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑁)) = 𝑊) | ||
| Theorem | lswcshw 14831 | The last symbol of a word cyclically shifted by N positions is the symbol at index (N-1) of the original word. (Contributed by AV, 21-Mar-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1))) | ||
| Theorem | 2cshwcom 14832 | Cyclically shifting a word two times is commutative. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by Mario Carneiro/AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift 𝑀) = ((𝑊 cyclShift 𝑀) cyclShift 𝑁)) | ||
| Theorem | cshwleneq 14833 | If the results of cyclically shifting two words are equal, the length of the two words was equal. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑊) = (♯‘𝑈)) | ||
| Theorem | 3cshw 14834 | Cyclically shifting a word three times results in a once cyclically shifted word under certain circumstances. (Contributed by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑀))) | ||
| Theorem | cshweqdif2 14835 | If cyclically shifting two words (of the same length) results in the same word, cyclically shifting one of the words by the difference of the numbers of shifts results in the other word. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀 − 𝑁)) = 𝑊)) | ||
| Theorem | cshweqdifid 14836 | If cyclically shifting a word by two positions results in the same word, cyclically shifting the word by the difference of these two positions results in the original word itself. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑀) → (𝑊 cyclShift (𝑀 − 𝑁)) = 𝑊)) | ||
| Theorem | cshweqrep 14837* | If cyclically shifting a word by L position results in the word itself, the symbol at any position is repeated at multiples of L (modulo the length of the word) positions in the word. (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ∀𝑗 ∈ ℕ0 (𝑊‘𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (♯‘𝑊))))) | ||
| Theorem | cshw1 14838* | If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0)) | ||
| Theorem | cshw1repsw 14839 | If cyclically shifting a word by 1 position results in the word itself, the word is a "repeated symbol word". Remark: also "valid" for an empty word! (Contributed by AV, 8-Nov-2018.) (Proof shortened by AV, 10-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) | ||
| Theorem | cshwsexa 14840* | The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof shortened by SN, 15-Jan-2025.) |
| ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | ||
| Theorem | cshwsexaOLD 14841* | Obsolete version of cshwsexa 14840 as of 15-Jan-2025. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | ||
| Theorem | 2cshwcshw 14842* | If a word is a cyclically shifted word, and a second word is the result of cyclically shifting the same word, then the second word is the result of cyclically shifting the first word. (Contributed by AV, 11-May-2018.) (Revised by AV, 12-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
| ⊢ ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) | ||
| Theorem | scshwfzeqfzo 14843* | For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ ((𝑋 ∈ Word 𝑉 ∧ 𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)}) | ||
| Theorem | cshwcshid 14844* | A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym 29948 and erclwwlknsym 29997. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
| ⊢ (𝜑 → 𝑦 ∈ Word 𝑉) & ⊢ (𝜑 → (♯‘𝑥) = (♯‘𝑦)) ⇒ ⊢ (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))) | ||
| Theorem | cshwcsh2id 14845* | A cyclically shifted word can be reconstructed by cyclically shifting it again twice. Lemma for erclwwlktr 29949 and erclwwlkntr 29998. (Contributed by AV, 9-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
| ⊢ (𝜑 → 𝑧 ∈ Word 𝑉) & ⊢ (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ⇒ ⊢ (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) | ||
| Theorem | cshimadifsn 14846 | The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐹 ∈ Word 𝑆 ∧ 𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁))) | ||
| Theorem | cshimadifsn0 14847 | The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.) |
| ⊢ ((𝐹 ∈ Word 𝑆 ∧ 𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1)))) | ||
| Theorem | wrdco 14848 | Mapping a word by a function. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 𝑊) ∈ Word 𝐵) | ||
| Theorem | lenco 14849 | Length of a mapped word is unchanged. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (♯‘(𝐹 ∘ 𝑊)) = (♯‘𝑊)) | ||
| Theorem | s1co 14850 | Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) | ||
| Theorem | revco 14851 | Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹 ∘ 𝑊))) | ||
| Theorem | ccatco 14852 | Mapping of words commutes with concatenation. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 ++ 𝑇)) = ((𝐹 ∘ 𝑆) ++ (𝐹 ∘ 𝑇))) | ||
| Theorem | cshco 14853 | Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹 ∘ 𝑊) cyclShift 𝑁)) | ||
| Theorem | swrdco 14854 | Mapping of words commutes with the substring operation. (Contributed by AV, 11-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 substr 〈𝑀, 𝑁〉)) = ((𝐹 ∘ 𝑊) substr 〈𝑀, 𝑁〉)) | ||
| Theorem | pfxco 14855 | Mapping of words commutes with the prefix operation. (Contributed by AV, 15-May-2020.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑊 prefix 𝑁)) = ((𝐹 ∘ 𝑊) prefix 𝑁)) | ||
| Theorem | lswco 14856 | Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if 𝑊 = ∅, (𝐹‘∅) ≠ ∅ and ∅ ∈ 𝐴, because then (lastS‘(𝐹 ∘ 𝑊)) = (lastS‘∅) = ∅ ≠ (𝐹‘∅) = (𝐹(lastS‘𝑊)). (Contributed by AV, 11-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (lastS‘(𝐹 ∘ 𝑊)) = (𝐹‘(lastS‘𝑊))) | ||
| Theorem | repsco 14857 | Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) | ||
| Syntax | cs2 14858 | Syntax for the length 2 word constructor. |
| class 〈“𝐴𝐵”〉 | ||
| Syntax | cs3 14859 | Syntax for the length 3 word constructor. |
| class 〈“𝐴𝐵𝐶”〉 | ||
| Syntax | cs4 14860 | Syntax for the length 4 word constructor. |
| class 〈“𝐴𝐵𝐶𝐷”〉 | ||
| Syntax | cs5 14861 | Syntax for the length 5 word constructor. |
| class 〈“𝐴𝐵𝐶𝐷𝐸”〉 | ||
| Syntax | cs6 14862 | Syntax for the length 6 word constructor. |
| class 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 | ||
| Syntax | cs7 14863 | Syntax for the length 7 word constructor. |
| class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 | ||
| Syntax | cs8 14864 | Syntax for the length 8 word constructor. |
| class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 | ||
| Definition | df-s2 14865 | Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | ||
| Definition | df-s3 14866 | Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | ||
| Definition | df-s4 14867 | Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) | ||
| Definition | df-s5 14868 | Define the length 5 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) | ||
| Definition | df-s6 14869 | Define the length 6 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹”〉) | ||
| Definition | df-s7 14870 | Define the length 7 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) | ||
| Definition | df-s8 14871 | Define the length 8 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) | ||
| Theorem | cats1cld 14872 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑇 ∈ Word 𝐴) | ||
| Theorem | cats1co 14873 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝑆) = 𝑈) & ⊢ 𝑉 = (𝑈 ++ 〈“(𝐹‘𝑋)”〉) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝑇) = 𝑉) | ||
| Theorem | cats1cli 14874 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V ⇒ ⊢ 𝑇 ∈ Word V | ||
| Theorem | cats1fvn 14875 | The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) | ||
| Theorem | cats1fv 14876 | A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 & ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑁 < 𝑀 ⇒ ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) | ||
| Theorem | cats1len 14877 | The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝑇) = 𝑁 | ||
| Theorem | cats1cat 14878 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝐴 ∈ Word V & ⊢ 𝑆 ∈ Word V & ⊢ 𝐶 = (𝐵 ++ 〈“𝑋”〉) & ⊢ 𝐵 = (𝐴 ++ 𝑆) ⇒ ⊢ 𝐶 = (𝐴 ++ 𝑇) | ||
| Theorem | cats2cat 14879 | Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) |
| ⊢ 𝐵 ∈ Word V & ⊢ 𝐷 ∈ Word V & ⊢ 𝐴 = (𝐵 ++ 〈“𝑋”〉) & ⊢ 𝐶 = (〈“𝑌”〉 ++ 𝐷) ⇒ ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷) | ||
| Theorem | s2eqd 14880 | Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) | ||
| Theorem | s3eqd 14881 | Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) | ||
| Theorem | s4eqd 14882 | Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) | ||
| Theorem | s5eqd 14883 | Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 = 〈“𝑁𝑂𝑃𝑄𝑅”〉) | ||
| Theorem | s6eqd 14884 | Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉) | ||
| Theorem | s7eqd 14885 | Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) & ⊢ (𝜑 → 𝐺 = 𝑇) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) | ||
| Theorem | s8eqd 14886 | Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) & ⊢ (𝜑 → 𝐺 = 𝑇) & ⊢ (𝜑 → 𝐻 = 𝑈) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) | ||
| Theorem | s3eq2 14887 | Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
| ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) | ||
| Theorem | s2cld 14888 | A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) | ||
| Theorem | s3cld 14889 | A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) | ||
| Theorem | s4cld 14890 | A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word 𝑋) | ||
| Theorem | s5cld 14891 | A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 ∈ Word 𝑋) | ||
| Theorem | s6cld 14892 | A length 6 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ∈ Word 𝑋) | ||
| Theorem | s7cld 14893 | A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ∈ Word 𝑋) | ||
| Theorem | s8cld 14894 | A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 ∈ Word 𝑋) | ||
| Theorem | s2cl 14895 | A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈“𝐴𝐵”〉 ∈ Word 𝑋) | ||
| Theorem | s3cl 14896 | A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) | ||
| Theorem | s2cli 14897 | A doubleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵”〉 ∈ Word V | ||
| Theorem | s3cli 14898 | A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | ||
| Theorem | s4cli 14899 | A length 4 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | ||
| Theorem | s5cli 14900 | A length 5 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| ⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 ∈ Word V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |