![]() |
Metamath
Proof Explorer Theorem List (p. 149 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30209) |
![]() (30210-31732) |
![]() (31733-47936) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-s2 14801 | Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) | ||
Definition | df-s3 14802 | Define the length 3 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) | ||
Definition | df-s4 14803 | Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) | ||
Definition | df-s5 14804 | Define the length 5 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩) | ||
Definition | df-s6 14805 | Define the length 6 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) | ||
Definition | df-s7 14806 | Define the length 7 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ++ ⟨“𝐺”⟩) | ||
Definition | df-s8 14807 | Define the length 8 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩) | ||
Theorem | cats1cld 14808 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑇 ∈ Word 𝐴) | ||
Theorem | cats1co 14809 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝑆) = 𝑈) & ⊢ 𝑉 = (𝑈 ++ ⟨“(𝐹‘𝑋)”⟩) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝑇) = 𝑉) | ||
Theorem | cats1cli 14810 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) & ⊢ 𝑆 ∈ Word V ⇒ ⊢ 𝑇 ∈ Word V | ||
Theorem | cats1fvn 14811 | The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) | ||
Theorem | cats1fv 14812 | A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 & ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑁 < 𝑀 ⇒ ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) | ||
Theorem | cats1len 14813 | The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) & ⊢ 𝑆 ∈ Word V & ⊢ (♯‘𝑆) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝑇) = 𝑁 | ||
Theorem | cats1cat 14814 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ ⟨“𝑋”⟩) & ⊢ 𝐴 ∈ Word V & ⊢ 𝑆 ∈ Word V & ⊢ 𝐶 = (𝐵 ++ ⟨“𝑋”⟩) & ⊢ 𝐵 = (𝐴 ++ 𝑆) ⇒ ⊢ 𝐶 = (𝐴 ++ 𝑇) | ||
Theorem | cats2cat 14815 | Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) |
⊢ 𝐵 ∈ Word V & ⊢ 𝐷 ∈ Word V & ⊢ 𝐴 = (𝐵 ++ ⟨“𝑋”⟩) & ⊢ 𝐶 = (⟨“𝑌”⟩ ++ 𝐷) ⇒ ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ ⟨“𝑋𝑌”⟩) ++ 𝐷) | ||
Theorem | s2eqd 14816 | Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩) | ||
Theorem | s3eqd 14817 | Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩) | ||
Theorem | s4eqd 14818 | Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ = ⟨“𝑁𝑂𝑃𝑄”⟩) | ||
Theorem | s5eqd 14819 | Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅”⟩) | ||
Theorem | s6eqd 14820 | Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩) | ||
Theorem | s7eqd 14821 | Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) & ⊢ (𝜑 → 𝐺 = 𝑇) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩) | ||
Theorem | s8eqd 14822 | Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) & ⊢ (𝜑 → 𝐺 = 𝑇) & ⊢ (𝜑 → 𝐻 = 𝑈) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩) | ||
Theorem | s3eq2 14823 | Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
⊢ (𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩) | ||
Theorem | s2cld 14824 | A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋) | ||
Theorem | s3cld 14825 | A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑋) | ||
Theorem | s4cld 14826 | A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word 𝑋) | ||
Theorem | s5cld 14827 | A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ∈ Word 𝑋) | ||
Theorem | s6cld 14828 | A length 6 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ∈ Word 𝑋) | ||
Theorem | s7cld 14829 | A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word 𝑋) | ||
Theorem | s8cld 14830 | A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ ∈ Word 𝑋) | ||
Theorem | s2cl 14831 | A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋) | ||
Theorem | s3cl 14832 | A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑋) | ||
Theorem | s2cli 14833 | A doubleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵”⟩ ∈ Word V | ||
Theorem | s3cli 14834 | A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶”⟩ ∈ Word V | ||
Theorem | s4cli 14835 | A length 4 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷”⟩ ∈ Word V | ||
Theorem | s5cli 14836 | A length 5 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ∈ Word V | ||
Theorem | s6cli 14837 | A length 6 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ∈ Word V | ||
Theorem | s7cli 14838 | A length 7 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ∈ Word V | ||
Theorem | s8cli 14839 | A length 8 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ ∈ Word V | ||
Theorem | s2fv0 14840 | Extract the first symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝐴 ∈ 𝑉 → (⟨“𝐴𝐵”⟩‘0) = 𝐴) | ||
Theorem | s2fv1 14841 | Extract the second symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝐵 ∈ 𝑉 → (⟨“𝐴𝐵”⟩‘1) = 𝐵) | ||
Theorem | s2len 14842 | The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘⟨“𝐴𝐵”⟩) = 2 | ||
Theorem | s2dm 14843 | The domain of a doubleton word is an unordered pair. (Contributed by AV, 9-Jan-2020.) |
⊢ dom ⟨“𝐴𝐵”⟩ = {0, 1} | ||
Theorem | s3fv0 14844 | Extract the first symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴) | ||
Theorem | s3fv1 14845 | Extract the second symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ (𝐵 ∈ 𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵) | ||
Theorem | s3fv2 14846 | Extract the third symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ (𝐶 ∈ 𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶) | ||
Theorem | s3len 14847 | The length of a length 3 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3 | ||
Theorem | s4fv0 14848 | Extract the first symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘0) = 𝐴) | ||
Theorem | s4fv1 14849 | Extract the second symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐵 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘1) = 𝐵) | ||
Theorem | s4fv2 14850 | Extract the third symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐶 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘2) = 𝐶) | ||
Theorem | s4fv3 14851 | Extract the fourth symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐷 ∈ 𝑉 → (⟨“𝐴𝐵𝐶𝐷”⟩‘3) = 𝐷) | ||
Theorem | s4len 14852 | The length of a length 4 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4 | ||
Theorem | s5len 14853 | The length of a length 5 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘⟨“𝐴𝐵𝐶𝐷𝐸”⟩) = 5 | ||
Theorem | s6len 14854 | The length of a length 6 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩) = 6 | ||
Theorem | s7len 14855 | The length of a length 7 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩) = 7 | ||
Theorem | s8len 14856 | The length of a length 8 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (♯‘⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩) = 8 | ||
Theorem | lsws2 14857 | The last symbol of a doubleton word is its second symbol. (Contributed by AV, 8-Feb-2021.) |
⊢ (𝐵 ∈ 𝑉 → (lastS‘⟨“𝐴𝐵”⟩) = 𝐵) | ||
Theorem | lsws3 14858 | The last symbol of a 3 letter word is its third symbol. (Contributed by AV, 8-Feb-2021.) |
⊢ (𝐶 ∈ 𝑉 → (lastS‘⟨“𝐴𝐵𝐶”⟩) = 𝐶) | ||
Theorem | lsws4 14859 | The last symbol of a 4 letter word is its fourth symbol. (Contributed by AV, 8-Feb-2021.) |
⊢ (𝐷 ∈ 𝑉 → (lastS‘⟨“𝐴𝐵𝐶𝐷”⟩) = 𝐷) | ||
Theorem | s2prop 14860 | A length 2 word is an unordered pair of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) | ||
Theorem | s2dmALT 14861 | Alternate version of s2dm 14843, having a shorter proof, but requiring that 𝐴 and 𝐵 are sets. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → dom ⟨“𝐴𝐵”⟩ = {0, 1}) | ||
Theorem | s3tpop 14862 | A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ⟨“𝐴𝐵𝐶”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}) | ||
Theorem | s4prop 14863 | A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})) | ||
Theorem | s3fn 14864 | A length 3 word is a function with a triple as domain. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Revised by AV, 23-Jan-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ⟨“𝐴𝐵𝐶”⟩ Fn {0, 1, 2}) | ||
Theorem | funcnvs1 14865 | The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
⊢ Fun ◡⟨“𝐴”⟩ | ||
Theorem | funcnvs2 14866 | The converse of a length 2 word is a function if its symbols are different sets. (Contributed by AV, 23-Jan-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → Fun ◡⟨“𝐴𝐵”⟩) | ||
Theorem | funcnvs3 14867 | The converse of a length 3 word is a function if its symbols are different sets. (Contributed by Alexander van der Vekens, 31-Jan-2018.) (Revised by AV, 23-Jan-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → Fun ◡⟨“𝐴𝐵𝐶”⟩) | ||
Theorem | funcnvs4 14868 | The converse of a length 4 word is a function if its symbols are different sets. (Contributed by AV, 10-Feb-2021.) |
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → Fun ◡⟨“𝐴𝐵𝐶𝐷”⟩) | ||
Theorem | s2f1o 14869 | A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) | ||
Theorem | f1oun2prg 14870 | A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))) | ||
Theorem | s4f1o 14871 | A length 4 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))) | ||
Theorem | s4dom 14872 | The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3}))) | ||
Theorem | s2co 14873 | Mapping a doubleton word by a function. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∘ ⟨“𝐴𝐵”⟩) = ⟨“(𝐹‘𝐴)(𝐹‘𝐵)”⟩) | ||
Theorem | s3co 14874 | Mapping a length 3 string by a function. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∘ ⟨“𝐴𝐵𝐶”⟩) = ⟨“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”⟩) | ||
Theorem | s0s1 14875 | Concatenation of fixed length strings. (This special case of ccatlid 14538 is provided to complete the pattern s0s1 14875, df-s2 14801, df-s3 14802, ...) (Contributed by Mario Carneiro, 28-Feb-2016.) |
⊢ ⟨“𝐴”⟩ = (∅ ++ ⟨“𝐴”⟩) | ||
Theorem | s1s2 14876 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶”⟩) | ||
Theorem | s1s3 14877 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷”⟩) | ||
Theorem | s1s4 14878 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸”⟩) | ||
Theorem | s1s5 14879 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸𝐹”⟩) | ||
Theorem | s1s6 14880 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸𝐹𝐺”⟩) | ||
Theorem | s1s7 14881 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩) | ||
Theorem | s2s2 14882 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶𝐷”⟩) | ||
Theorem | s4s2 14883 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹”⟩) | ||
Theorem | s4s3 14884 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩) | ||
Theorem | s4s4 14885 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺𝐻”⟩) | ||
Theorem | s3s4 14886 | Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷𝐸𝐹𝐺”⟩) | ||
Theorem | s2s5 14887 | Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶𝐷𝐸𝐹𝐺”⟩) | ||
Theorem | s5s2 14888 | Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
⊢ ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹𝐺”⟩) | ||
Theorem | s2eq2s1eq 14889 | Two length 2 words are equal iff the corresponding singleton words consisting of their symbols are equal. (Contributed by Alexander van der Vekens, 24-Sep-2018.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩))) | ||
Theorem | s2eq2seq 14890 | Two length 2 words are equal iff the corresponding symbols are equal. (Contributed by AV, 20-Oct-2018.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | s3eqs2s1eq 14891 | Two length 3 words are equal iff the corresponding length 2 words and singleton words consisting of their symbols are equal. (Contributed by AV, 4-Jan-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩))) | ||
Theorem | s3eq3seq 14892 | Two length 3 words are equal iff the corresponding symbols are equal. (Contributed by AV, 4-Jan-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) | ||
Theorem | swrds2 14893 | Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊‘𝐼)(𝑊‘(𝐼 + 1))”⟩) | ||
Theorem | swrds2m 14894 | Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr ⟨(𝑁 − 2), 𝑁⟩) = ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩) | ||
Theorem | wrdlen2i 14895 | Implications of a word of length two. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))) | ||
Theorem | wrd2pr2op 14896 | A word of length two represented as unordered pair of ordered pairs. (Contributed by AV, 20-Oct-2018.) (Proof shortened by AV, 26-Jan-2021.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → 𝑊 = {⟨0, (𝑊‘0)⟩, ⟨1, (𝑊‘1)⟩}) | ||
Theorem | wrdlen2 14897 | A word of length two. (Contributed by AV, 20-Oct-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))) | ||
Theorem | wrdlen2s2 14898 | A word of length two as doubleton word. (Contributed by AV, 20-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → 𝑊 = ⟨“(𝑊‘0)(𝑊‘1)”⟩) | ||
Theorem | wrdl2exs2 14899* | A word of length two is a doubleton word. (Contributed by AV, 25-Jan-2021.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = ⟨“𝑠𝑡”⟩) | ||
Theorem | pfx2 14900 | A prefix of length two. (Contributed by AV, 15-May-2020.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |