| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version | ||
| Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | 1, 2, 3, 4 | cs4 14862 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
| 6 | 1, 2, 3 | cs3 14861 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
| 7 | 4 | cs1 14613 | . . 3 class 〈“𝐷”〉 |
| 8 | cconcat 14588 | . . 3 class ++ | |
| 9 | 6, 7, 8 | co 7405 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| 10 | 5, 9 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s4eqd 14884 s4cld 14892 s4cli 14901 s4fv0 14914 s4fv1 14915 s4fv2 14916 s4fv3 14917 s4len 14918 s4prop 14929 s1s3 14943 s1s4 14944 s2s2 14948 s4s4 14951 s7rn 14984 tgcgr4 28510 konigsberglem1 30233 konigsberglem2 30234 konigsberglem3 30235 gpgprismgr4cycllem8 48101 |
| Copyright terms: Public domain | W3C validator |