| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version | ||
| Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | 1, 2, 3, 4 | cs4 14785 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
| 6 | 1, 2, 3 | cs3 14784 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
| 7 | 4 | cs1 14536 | . . 3 class 〈“𝐷”〉 |
| 8 | cconcat 14511 | . . 3 class ++ | |
| 9 | 6, 7, 8 | co 7369 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| 10 | 5, 9 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s4eqd 14807 s4cld 14815 s4cli 14824 s4fv0 14837 s4fv1 14838 s4fv2 14839 s4fv3 14840 s4len 14841 s4prop 14852 s1s3 14866 s1s4 14867 s2s2 14871 s4s4 14874 s7rn 14907 tgcgr4 28434 konigsberglem1 30154 konigsberglem2 30155 konigsberglem3 30156 gpgprismgr4cycllem8 48065 |
| Copyright terms: Public domain | W3C validator |