![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version |
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s4 | ⊢ ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | cD | . . 3 class 𝐷 | |
5 | 1, 2, 3, 4 | cs4 14794 | . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩ |
6 | 1, 2, 3 | cs3 14793 | . . 3 class ⟨“𝐴𝐵𝐶”⟩ |
7 | 4 | cs1 14545 | . . 3 class ⟨“𝐷”⟩ |
8 | cconcat 14520 | . . 3 class ++ | |
9 | 6, 7, 8 | co 7409 | . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) |
10 | 5, 9 | wceq 1542 | 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: s4eqd 14816 s4cld 14824 s4cli 14833 s4fv0 14846 s4fv1 14847 s4fv2 14848 s4fv3 14849 s4len 14850 s4prop 14861 s1s3 14875 s1s4 14876 s2s2 14880 s4s4 14883 tgcgr4 27782 konigsberglem1 29505 konigsberglem2 29506 konigsberglem3 29507 |
Copyright terms: Public domain | W3C validator |