![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version |
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | cD | . . 3 class 𝐷 | |
5 | 1, 2, 3, 4 | cs4 14892 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
6 | 1, 2, 3 | cs3 14891 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
7 | 4 | cs1 14643 | . . 3 class 〈“𝐷”〉 |
8 | cconcat 14618 | . . 3 class ++ | |
9 | 6, 7, 8 | co 7448 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
10 | 5, 9 | wceq 1537 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s4eqd 14914 s4cld 14922 s4cli 14931 s4fv0 14944 s4fv1 14945 s4fv2 14946 s4fv3 14947 s4len 14948 s4prop 14959 s1s3 14973 s1s4 14974 s2s2 14978 s4s4 14981 s7rn 15014 tgcgr4 28557 konigsberglem1 30284 konigsberglem2 30285 konigsberglem3 30286 |
Copyright terms: Public domain | W3C validator |