Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version |
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | cD | . . 3 class 𝐷 | |
5 | 1, 2, 3, 4 | cs4 14556 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
6 | 1, 2, 3 | cs3 14555 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
7 | 4 | cs1 14300 | . . 3 class 〈“𝐷”〉 |
8 | cconcat 14273 | . . 3 class ++ | |
9 | 6, 7, 8 | co 7275 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
10 | 5, 9 | wceq 1539 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s4eqd 14578 s4cld 14586 s4cli 14595 s4fv0 14608 s4fv1 14609 s4fv2 14610 s4fv3 14611 s4len 14612 s4prop 14623 s1s3 14637 s1s4 14638 s2s2 14642 s4s4 14645 tgcgr4 26892 konigsberglem1 28616 konigsberglem2 28617 konigsberglem3 28618 |
Copyright terms: Public domain | W3C validator |