| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version | ||
| Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | 1, 2, 3, 4 | cs4 14816 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
| 6 | 1, 2, 3 | cs3 14815 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
| 7 | 4 | cs1 14567 | . . 3 class 〈“𝐷”〉 |
| 8 | cconcat 14542 | . . 3 class ++ | |
| 9 | 6, 7, 8 | co 7390 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| 10 | 5, 9 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s4eqd 14838 s4cld 14846 s4cli 14855 s4fv0 14868 s4fv1 14869 s4fv2 14870 s4fv3 14871 s4len 14872 s4prop 14883 s1s3 14897 s1s4 14898 s2s2 14902 s4s4 14905 s7rn 14938 tgcgr4 28465 konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 gpgprismgr4cycllem8 48096 |
| Copyright terms: Public domain | W3C validator |