MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 14792
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 14785 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 14784 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 14536 . . 3 class ⟨“𝐷”⟩
8 cconcat 14511 . . 3 class ++
96, 7, 8co 7369 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1540 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  14807  s4cld  14815  s4cli  14824  s4fv0  14837  s4fv1  14838  s4fv2  14839  s4fv3  14840  s4len  14841  s4prop  14852  s1s3  14866  s1s4  14867  s2s2  14871  s4s4  14874  s7rn  14907  tgcgr4  28511  konigsberglem1  30231  konigsberglem2  30232  konigsberglem3  30233  gpgprismgr4cycllem8  48085
  Copyright terms: Public domain W3C validator