MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 14899
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 14892 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 14891 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 14643 . . 3 class ⟨“𝐷”⟩
8 cconcat 14618 . . 3 class ++
96, 7, 8co 7448 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1537 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  14914  s4cld  14922  s4cli  14931  s4fv0  14944  s4fv1  14945  s4fv2  14946  s4fv3  14947  s4len  14948  s4prop  14959  s1s3  14973  s1s4  14974  s2s2  14978  s4s4  14981  s7rn  15014  tgcgr4  28557  konigsberglem1  30284  konigsberglem2  30285  konigsberglem3  30286
  Copyright terms: Public domain W3C validator