Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version |
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | cD | . . 3 class 𝐷 | |
5 | 1, 2, 3, 4 | cs4 14484 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
6 | 1, 2, 3 | cs3 14483 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
7 | 4 | cs1 14228 | . . 3 class 〈“𝐷”〉 |
8 | cconcat 14201 | . . 3 class ++ | |
9 | 6, 7, 8 | co 7255 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
10 | 5, 9 | wceq 1539 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s4eqd 14506 s4cld 14514 s4cli 14523 s4fv0 14536 s4fv1 14537 s4fv2 14538 s4fv3 14539 s4len 14540 s4prop 14551 s1s3 14565 s1s4 14566 s2s2 14570 s4s4 14573 tgcgr4 26796 konigsberglem1 28517 konigsberglem2 28518 konigsberglem3 28519 |
Copyright terms: Public domain | W3C validator |