| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version | ||
| Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | 1, 2, 3, 4 | cs4 14750 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
| 6 | 1, 2, 3 | cs3 14749 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
| 7 | 4 | cs1 14503 | . . 3 class 〈“𝐷”〉 |
| 8 | cconcat 14477 | . . 3 class ++ | |
| 9 | 6, 7, 8 | co 7346 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| 10 | 5, 9 | wceq 1541 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s4eqd 14772 s4cld 14780 s4cli 14789 s4fv0 14802 s4fv1 14803 s4fv2 14804 s4fv3 14805 s4len 14806 s4prop 14817 s1s3 14831 s1s4 14832 s2s2 14836 s4s4 14839 s7rn 14872 tgcgr4 28509 konigsberglem1 30232 konigsberglem2 30233 konigsberglem3 30234 nthrucw 46994 gpgprismgr4cycllem8 48212 |
| Copyright terms: Public domain | W3C validator |