MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 14801
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 14794 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 14793 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 14545 . . 3 class ⟨“𝐷”⟩
8 cconcat 14520 . . 3 class ++
96, 7, 8co 7409 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1542 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  14816  s4cld  14824  s4cli  14833  s4fv0  14846  s4fv1  14847  s4fv2  14848  s4fv3  14849  s4len  14850  s4prop  14861  s1s3  14875  s1s4  14876  s2s2  14880  s4s4  14883  tgcgr4  27782  konigsberglem1  29505  konigsberglem2  29506  konigsberglem3  29507
  Copyright terms: Public domain W3C validator