| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version | ||
| Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | 1, 2, 3, 4 | cs4 14809 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
| 6 | 1, 2, 3 | cs3 14808 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
| 7 | 4 | cs1 14560 | . . 3 class 〈“𝐷”〉 |
| 8 | cconcat 14535 | . . 3 class ++ | |
| 9 | 6, 7, 8 | co 7387 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| 10 | 5, 9 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s4eqd 14831 s4cld 14839 s4cli 14848 s4fv0 14861 s4fv1 14862 s4fv2 14863 s4fv3 14864 s4len 14865 s4prop 14876 s1s3 14890 s1s4 14891 s2s2 14895 s4s4 14898 s7rn 14931 tgcgr4 28458 konigsberglem1 30181 konigsberglem2 30182 konigsberglem3 30183 gpgprismgr4cycllem8 48092 |
| Copyright terms: Public domain | W3C validator |