![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version |
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s4 | ⊢ ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | cD | . . 3 class 𝐷 | |
5 | 1, 2, 3, 4 | cs4 14791 | . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩ |
6 | 1, 2, 3 | cs3 14790 | . . 3 class ⟨“𝐴𝐵𝐶”⟩ |
7 | 4 | cs1 14542 | . . 3 class ⟨“𝐷”⟩ |
8 | cconcat 14517 | . . 3 class ++ | |
9 | 6, 7, 8 | co 7406 | . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) |
10 | 5, 9 | wceq 1542 | 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: s4eqd 14813 s4cld 14821 s4cli 14830 s4fv0 14843 s4fv1 14844 s4fv2 14845 s4fv3 14846 s4len 14847 s4prop 14858 s1s3 14872 s1s4 14873 s2s2 14877 s4s4 14880 tgcgr4 27772 konigsberglem1 29495 konigsberglem2 29496 konigsberglem3 29497 |
Copyright terms: Public domain | W3C validator |