MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 14867
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 14860 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 14859 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 14611 . . 3 class ⟨“𝐷”⟩
8 cconcat 14586 . . 3 class ++
96, 7, 8co 7403 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1540 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  14882  s4cld  14890  s4cli  14899  s4fv0  14912  s4fv1  14913  s4fv2  14914  s4fv3  14915  s4len  14916  s4prop  14927  s1s3  14941  s1s4  14942  s2s2  14946  s4s4  14949  s7rn  14982  tgcgr4  28456  konigsberglem1  30179  konigsberglem2  30180  konigsberglem3  30181  gpgprismgr4cycllem8  48049
  Copyright terms: Public domain W3C validator