MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 14798
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 14791 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 14790 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 14542 . . 3 class ⟨“𝐷”⟩
8 cconcat 14517 . . 3 class ++
96, 7, 8co 7406 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1542 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  14813  s4cld  14821  s4cli  14830  s4fv0  14843  s4fv1  14844  s4fv2  14845  s4fv3  14846  s4len  14847  s4prop  14858  s1s3  14872  s1s4  14873  s2s2  14877  s4s4  14880  tgcgr4  27772  konigsberglem1  29495  konigsberglem2  29496  konigsberglem3  29497
  Copyright terms: Public domain W3C validator