MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 14816
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 14809 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 14808 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 14560 . . 3 class ⟨“𝐷”⟩
8 cconcat 14535 . . 3 class ++
96, 7, 8co 7387 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1540 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  14831  s4cld  14839  s4cli  14848  s4fv0  14861  s4fv1  14862  s4fv2  14863  s4fv3  14864  s4len  14865  s4prop  14876  s1s3  14890  s1s4  14891  s2s2  14895  s4s4  14898  s7rn  14931  tgcgr4  28458  konigsberglem1  30181  konigsberglem2  30182  konigsberglem3  30183  gpgprismgr4cycllem8  48092
  Copyright terms: Public domain W3C validator