| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version | ||
| Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | cD | . . 3 class 𝐷 | |
| 5 | 1, 2, 3, 4 | cs4 14860 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
| 6 | 1, 2, 3 | cs3 14859 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
| 7 | 4 | cs1 14611 | . . 3 class 〈“𝐷”〉 |
| 8 | cconcat 14586 | . . 3 class ++ | |
| 9 | 6, 7, 8 | co 7403 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| 10 | 5, 9 | wceq 1540 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: s4eqd 14882 s4cld 14890 s4cli 14899 s4fv0 14912 s4fv1 14913 s4fv2 14914 s4fv3 14915 s4len 14916 s4prop 14927 s1s3 14941 s1s4 14942 s2s2 14946 s4s4 14949 s7rn 14982 tgcgr4 28456 konigsberglem1 30179 konigsberglem2 30180 konigsberglem3 30181 gpgprismgr4cycllem8 48049 |
| Copyright terms: Public domain | W3C validator |