![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version |
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | cD | . . 3 class 𝐷 | |
5 | 1, 2, 3, 4 | cs4 14878 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
6 | 1, 2, 3 | cs3 14877 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
7 | 4 | cs1 14629 | . . 3 class 〈“𝐷”〉 |
8 | cconcat 14604 | . . 3 class ++ | |
9 | 6, 7, 8 | co 7430 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
10 | 5, 9 | wceq 1536 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s4eqd 14900 s4cld 14908 s4cli 14917 s4fv0 14930 s4fv1 14931 s4fv2 14932 s4fv3 14933 s4len 14934 s4prop 14945 s1s3 14959 s1s4 14960 s2s2 14964 s4s4 14967 s7rn 15000 tgcgr4 28553 konigsberglem1 30280 konigsberglem2 30281 konigsberglem3 30282 |
Copyright terms: Public domain | W3C validator |