MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 14885
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 14878 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 14877 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 14629 . . 3 class ⟨“𝐷”⟩
8 cconcat 14604 . . 3 class ++
96, 7, 8co 7430 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1536 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  14900  s4cld  14908  s4cli  14917  s4fv0  14930  s4fv1  14931  s4fv2  14932  s4fv3  14933  s4len  14934  s4prop  14945  s1s3  14959  s1s4  14960  s2s2  14964  s4s4  14967  s7rn  15000  tgcgr4  28553  konigsberglem1  30280  konigsberglem2  30281  konigsberglem3  30282
  Copyright terms: Public domain W3C validator