MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem1 Structured version   Visualization version   GIF version

Theorem konigsberglem1 29974
Description: Lemma 1 for konigsberg 29979: Vertex 0 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
konigsberg.g 𝐺 = βŸ¨π‘‰, 𝐸⟩
Assertion
Ref Expression
konigsberglem1 ((VtxDegβ€˜πΊ)β€˜0) = 3

Proof of Theorem konigsberglem1
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ovex 7434 . . . 4 (0...3) ∈ V
2 s6cli 14832 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word V
32elexi 3486 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ V
41, 3opvtxfvi 28738 . . 3 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = (0...3)
54eqcomi 2733 . 2 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)
6 3nn0 12487 . . 3 3 ∈ β„•0
7 0elfz 13595 . . 3 (3 ∈ β„•0 β†’ 0 ∈ (0...3))
86, 7ax-mp 5 . 2 0 ∈ (0...3)
91, 3opiedgfvi 28739 . . 3 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©
109eqcomi 2733 . 2 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)
11 s1cli 14552 . . 3 βŸ¨β€œ{2, 3}β€βŸ© ∈ Word V
12 df-s7 14801 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
13 eqid 2724 . . . 4 (0...3) = (0...3)
14 eqid 2724 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
15 eqid 2724 . . . 4 ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ© = ⟨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©βŸ©
1613, 14, 15konigsbergssiedgw 29972 . . 3 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
172, 11, 12, 16mp3an 1457 . 2 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
18 s5cli 14831 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word V
1918elexi 3486 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ V
201, 19opvtxfvi 28738 . . . 4 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = (0...3)
2120eqcomi 2733 . . 3 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)
221, 19opiedgfvi 28739 . . . 4 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©
2322eqcomi 2733 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)
24 s2cli 14828 . . . 4 βŸ¨β€œ{2, 3} {2, 3}β€βŸ© ∈ Word V
25 s5s2 14883 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3} {2, 3}β€βŸ©)
2613, 14, 15konigsbergssiedgw 29972 . . . 4 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
2718, 24, 25, 26mp3an 1457 . . 3 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
28 s4cli 14830 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word V
2928elexi 3486 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ V
301, 29opvtxfvi 28738 . . . . 5 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = (0...3)
3130eqcomi 2733 . . . 4 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)
321, 29opiedgfvi 28739 . . . . 5 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©
3332eqcomi 2733 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)
34 s3cli 14829 . . . . 5 βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
35 s4s3 14879 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ©)
3613, 14, 15konigsbergssiedgw 29972 . . . . 5 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
3728, 34, 35, 36mp3an 1457 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
38 s3cli 14829 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word V
3938elexi 3486 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ V
401, 39opvtxfvi 28738 . . . . . 6 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = (0...3)
4140eqcomi 2733 . . . . 5 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)
421, 39opiedgfvi 28739 . . . . . 6 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©
4342eqcomi 2733 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)
44 s4cli 14830 . . . . . 6 βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
45 s3s4 14881 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
4613, 14, 15konigsbergssiedgw 29972 . . . . . 6 ((βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
4738, 44, 45, 46mp3an 1457 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
48 s2cli 14828 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word V
4948elexi 3486 . . . . . . . . 9 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ V
501, 49opvtxfvi 28738 . . . . . . . 8 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = (0...3)
5150eqcomi 2733 . . . . . . 7 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)
521, 49opiedgfvi 28739 . . . . . . . 8 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1} {0, 2}β€βŸ©
5352eqcomi 2733 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)
54 s5cli 14831 . . . . . . . 8 βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
55 s2s5 14882 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
5613, 14, 15konigsbergssiedgw 29972 . . . . . . . 8 ((βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
5748, 54, 55, 56mp3an 1457 . . . . . . 7 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
58 s1cli 14552 . . . . . . . . . . . 12 βŸ¨β€œ{0, 1}β€βŸ© ∈ Word V
5958elexi 3486 . . . . . . . . . . 11 βŸ¨β€œ{0, 1}β€βŸ© ∈ V
601, 59opvtxfvi 28738 . . . . . . . . . 10 (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = (0...3)
6160eqcomi 2733 . . . . . . . . 9 (0...3) = (Vtxβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)
621, 59opiedgfvi 28739 . . . . . . . . . 10 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = βŸ¨β€œ{0, 1}β€βŸ©
6362eqcomi 2733 . . . . . . . . 9 βŸ¨β€œ{0, 1}β€βŸ© = (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)
64 s6cli 14832 . . . . . . . . . 10 βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V
65 s1s6 14875 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)
6613, 14, 15konigsbergssiedgw 29972 . . . . . . . . . 10 ((βŸ¨β€œ{0, 1}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© ∈ Word V ∧ βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©)) β†’ βŸ¨β€œ{0, 1}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2})
6758, 64, 65, 66mp3an 1457 . . . . . . . . 9 βŸ¨β€œ{0, 1}β€βŸ© ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
68 0ex 5297 . . . . . . . . . . . . 13 βˆ… ∈ V
691, 68opvtxfvi 28738 . . . . . . . . . . . 12 (Vtxβ€˜βŸ¨(0...3), βˆ…βŸ©) = (0...3)
7069eqcomi 2733 . . . . . . . . . . 11 (0...3) = (Vtxβ€˜βŸ¨(0...3), βˆ…βŸ©)
711, 68opiedgfvi 28739 . . . . . . . . . . . 12 (iEdgβ€˜βŸ¨(0...3), βˆ…βŸ©) = βˆ…
7271eqcomi 2733 . . . . . . . . . . 11 βˆ… = (iEdgβ€˜βŸ¨(0...3), βˆ…βŸ©)
73 wrd0 14486 . . . . . . . . . . 11 βˆ… ∈ Word {π‘₯ ∈ (𝒫 (0...3) βˆ– {βˆ…}) ∣ (β™―β€˜π‘₯) ≀ 2}
74 eqid 2724 . . . . . . . . . . . 12 βˆ… = βˆ…
7570, 72vtxdg0e 29200 . . . . . . . . . . . 12 ((0 ∈ (0...3) ∧ βˆ… = βˆ…) β†’ ((VtxDegβ€˜βŸ¨(0...3), βˆ…βŸ©)β€˜0) = 0)
768, 74, 75mp2an 689 . . . . . . . . . . 11 ((VtxDegβ€˜βŸ¨(0...3), βˆ…βŸ©)β€˜0) = 0
77 1nn0 12485 . . . . . . . . . . . 12 1 ∈ β„•0
78 1le3 12421 . . . . . . . . . . . 12 1 ≀ 3
79 elfz2nn0 13589 . . . . . . . . . . . 12 (1 ∈ (0...3) ↔ (1 ∈ β„•0 ∧ 3 ∈ β„•0 ∧ 1 ≀ 3))
8077, 6, 78, 79mpbir3an 1338 . . . . . . . . . . 11 1 ∈ (0...3)
81 ax-1ne0 11175 . . . . . . . . . . 11 1 β‰  0
82 s0s1 14870 . . . . . . . . . . . 12 βŸ¨β€œ{0, 1}β€βŸ© = (βˆ… ++ βŸ¨β€œ{0, 1}β€βŸ©)
8362, 82eqtri 2752 . . . . . . . . . . 11 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©) = (βˆ… ++ βŸ¨β€œ{0, 1}β€βŸ©)
8470, 8, 72, 73, 76, 60, 80, 81, 83vdegp1bi 29263 . . . . . . . . . 10 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)β€˜0) = (0 + 1)
85 0p1e1 12331 . . . . . . . . . 10 (0 + 1) = 1
8684, 85eqtri 2752 . . . . . . . . 9 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1}β€βŸ©βŸ©)β€˜0) = 1
87 2nn0 12486 . . . . . . . . . 10 2 ∈ β„•0
88 2re 12283 . . . . . . . . . . 11 2 ∈ ℝ
89 3re 12289 . . . . . . . . . . 11 3 ∈ ℝ
90 2lt3 12381 . . . . . . . . . . 11 2 < 3
9188, 89, 90ltleii 11334 . . . . . . . . . 10 2 ≀ 3
92 elfz2nn0 13589 . . . . . . . . . 10 (2 ∈ (0...3) ↔ (2 ∈ β„•0 ∧ 3 ∈ β„•0 ∧ 2 ≀ 3))
9387, 6, 91, 92mpbir3an 1338 . . . . . . . . 9 2 ∈ (0...3)
94 2ne0 12313 . . . . . . . . 9 2 β‰  0
95 df-s2 14796 . . . . . . . . . 10 βŸ¨β€œ{0, 1} {0, 2}β€βŸ© = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2}β€βŸ©)
9652, 95eqtri 2752 . . . . . . . . 9 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1}β€βŸ© ++ βŸ¨β€œ{0, 2}β€βŸ©)
9761, 8, 63, 67, 86, 50, 93, 94, 96vdegp1bi 29263 . . . . . . . 8 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)β€˜0) = (1 + 1)
98 1p1e2 12334 . . . . . . . 8 (1 + 1) = 2
9997, 98eqtri 2752 . . . . . . 7 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2}β€βŸ©βŸ©)β€˜0) = 2
100 nn0fz0 13596 . . . . . . . 8 (3 ∈ β„•0 ↔ 3 ∈ (0...3))
1016, 100mpbi 229 . . . . . . 7 3 ∈ (0...3)
102 3ne0 12315 . . . . . . 7 3 β‰  0
103 df-s3 14797 . . . . . . . 8 βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3}β€βŸ©)
10442, 103eqtri 2752 . . . . . . 7 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2}β€βŸ© ++ βŸ¨β€œ{0, 3}β€βŸ©)
10551, 8, 53, 57, 99, 40, 101, 102, 104vdegp1bi 29263 . . . . . 6 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)β€˜0) = (2 + 1)
106 2p1e3 12351 . . . . . 6 (2 + 1) = 3
107105, 106eqtri 2752 . . . . 5 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ©βŸ©)β€˜0) = 3
108 df-s4 14798 . . . . . 6 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
10932, 108eqtri 2752 . . . . 5 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
11041, 8, 43, 47, 107, 30, 80, 81, 93, 94, 109vdegp1ai 29262 . . . 4 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ©βŸ©)β€˜0) = 3
111 df-s5 14799 . . . . 5 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
11222, 111eqtri 2752 . . . 4 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2}β€βŸ© ++ βŸ¨β€œ{1, 2}β€βŸ©)
11331, 8, 33, 37, 110, 20, 80, 81, 93, 94, 112vdegp1ai 29262 . . 3 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ©βŸ©)β€˜0) = 3
114 df-s6 14800 . . . 4 βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
1159, 114eqtri 2752 . . 3 (iEdgβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
11621, 8, 23, 27, 113, 4, 93, 94, 101, 102, 115vdegp1ai 29262 . 2 ((VtxDegβ€˜βŸ¨(0...3), βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ©βŸ©)β€˜0) = 3
117 konigsberg.v . . 3 𝑉 = (0...3)
118 konigsberg.e . . 3 𝐸 = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
119 konigsberg.g . . 3 𝐺 = βŸ¨π‘‰, 𝐸⟩
120117, 118, 119konigsbergvtx 29968 . 2 (Vtxβ€˜πΊ) = (0...3)
121117, 118, 119konigsbergiedg 29969 . . 3 (iEdgβ€˜πΊ) = βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}β€βŸ©
122121, 12eqtri 2752 . 2 (iEdgβ€˜πΊ) = (βŸ¨β€œ{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}β€βŸ© ++ βŸ¨β€œ{2, 3}β€βŸ©)
1235, 8, 10, 17, 116, 120, 93, 94, 101, 102, 122vdegp1ai 29262 1 ((VtxDegβ€˜πΊ)β€˜0) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  {crab 3424  Vcvv 3466   βˆ– cdif 3937  βˆ…c0 4314  π’« cpw 4594  {csn 4620  {cpr 4622  βŸ¨cop 4626   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107   + caddc 11109   ≀ cle 11246  2c2 12264  3c3 12265  β„•0cn0 12469  ...cfz 13481  β™―chash 14287  Word cword 14461   ++ cconcat 14517  βŸ¨β€œcs1 14542  βŸ¨β€œcs2 14789  βŸ¨β€œcs3 14790  βŸ¨β€œcs4 14791  βŸ¨β€œcs5 14792  βŸ¨β€œcs6 14793  βŸ¨β€œcs7 14794  Vtxcvtx 28725  iEdgciedg 28726  VtxDegcvtxdg 29191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-xadd 13090  df-fz 13482  df-fzo 13625  df-hash 14288  df-word 14462  df-concat 14518  df-s1 14543  df-s2 14796  df-s3 14797  df-s4 14798  df-s5 14799  df-s6 14800  df-s7 14801  df-vtx 28727  df-iedg 28728  df-vtxdg 29192
This theorem is referenced by:  konigsberglem4  29977
  Copyright terms: Public domain W3C validator