MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem1 Structured version   Visualization version   GIF version

Theorem konigsberglem1 28517
Description: Lemma 1 for konigsberg 28522: Vertex 0 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem1 ((VtxDeg‘𝐺)‘0) = 3

Proof of Theorem konigsberglem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7288 . . . 4 (0...3) ∈ V
2 s6cli 14525 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V
32elexi 3441 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ V
41, 3opvtxfvi 27282 . . 3 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (0...3)
54eqcomi 2747 . 2 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
6 3nn0 12181 . . 3 3 ∈ ℕ0
7 0elfz 13282 . . 3 (3 ∈ ℕ0 → 0 ∈ (0...3))
86, 7ax-mp 5 . 2 0 ∈ (0...3)
91, 3opiedgfvi 27283 . . 3 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩
109eqcomi 2747 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
11 s1cli 14238 . . 3 ⟨“{2, 3}”⟩ ∈ Word V
12 df-s7 14494 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
13 eqid 2738 . . . 4 (0...3) = (0...3)
14 eqid 2738 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
15 eqid 2738 . . . 4 ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩ = ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩
1613, 14, 15konigsbergssiedgw 28515 . . 3 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V ∧ ⟨“{2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
172, 11, 12, 16mp3an 1459 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
18 s5cli 14524 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V
1918elexi 3441 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ V
201, 19opvtxfvi 27282 . . . 4 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (0...3)
2120eqcomi 2747 . . 3 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
221, 19opiedgfvi 27283 . . . 4 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩
2322eqcomi 2747 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
24 s2cli 14521 . . . 4 ⟨“{2, 3} {2, 3}”⟩ ∈ Word V
25 s5s2 14576 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)
2613, 14, 15konigsbergssiedgw 28515 . . . 4 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V ∧ ⟨“{2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2718, 24, 25, 26mp3an 1459 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
28 s4cli 14523 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V
2928elexi 3441 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ V
301, 29opvtxfvi 27282 . . . . 5 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (0...3)
3130eqcomi 2747 . . . 4 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
321, 29opiedgfvi 27283 . . . . 5 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩
3332eqcomi 2747 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
34 s3cli 14522 . . . . 5 ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
35 s4s3 14572 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)
3613, 14, 15konigsbergssiedgw 28515 . . . . 5 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V ∧ ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
3728, 34, 35, 36mp3an 1459 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
38 s3cli 14522 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V
3938elexi 3441 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ V
401, 39opvtxfvi 27282 . . . . . 6 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (0...3)
4140eqcomi 2747 . . . . 5 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
421, 39opiedgfvi 27283 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3}”⟩
4342eqcomi 2747 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
44 s4cli 14523 . . . . . 6 ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
45 s3s4 14574 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)
4613, 14, 15konigsbergssiedgw 28515 . . . . . 6 ((⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V ∧ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
4738, 44, 45, 46mp3an 1459 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
48 s2cli 14521 . . . . . . . . . 10 ⟨“{0, 1} {0, 2}”⟩ ∈ Word V
4948elexi 3441 . . . . . . . . 9 ⟨“{0, 1} {0, 2}”⟩ ∈ V
501, 49opvtxfvi 27282 . . . . . . . 8 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (0...3)
5150eqcomi 2747 . . . . . . 7 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
521, 49opiedgfvi 27283 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = ⟨“{0, 1} {0, 2}”⟩
5352eqcomi 2747 . . . . . . 7 ⟨“{0, 1} {0, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
54 s5cli 14524 . . . . . . . 8 ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
55 s2s5 14575 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
5613, 14, 15konigsbergssiedgw 28515 . . . . . . . 8 ((⟨“{0, 1} {0, 2}”⟩ ∈ Word V ∧ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
5748, 54, 55, 56mp3an 1459 . . . . . . 7 ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
58 s1cli 14238 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ ∈ Word V
5958elexi 3441 . . . . . . . . . . 11 ⟨“{0, 1}”⟩ ∈ V
601, 59opvtxfvi 27282 . . . . . . . . . 10 (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (0...3)
6160eqcomi 2747 . . . . . . . . 9 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
621, 59opiedgfvi 27283 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = ⟨“{0, 1}”⟩
6362eqcomi 2747 . . . . . . . . 9 ⟨“{0, 1}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
64 s6cli 14525 . . . . . . . . . 10 ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
65 s1s6 14568 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
6613, 14, 15konigsbergssiedgw 28515 . . . . . . . . . 10 ((⟨“{0, 1}”⟩ ∈ Word V ∧ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
6758, 64, 65, 66mp3an 1459 . . . . . . . . 9 ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
68 0ex 5226 . . . . . . . . . . . . 13 ∅ ∈ V
691, 68opvtxfvi 27282 . . . . . . . . . . . 12 (Vtx‘⟨(0...3), ∅⟩) = (0...3)
7069eqcomi 2747 . . . . . . . . . . 11 (0...3) = (Vtx‘⟨(0...3), ∅⟩)
711, 68opiedgfvi 27283 . . . . . . . . . . . 12 (iEdg‘⟨(0...3), ∅⟩) = ∅
7271eqcomi 2747 . . . . . . . . . . 11 ∅ = (iEdg‘⟨(0...3), ∅⟩)
73 wrd0 14170 . . . . . . . . . . 11 ∅ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
74 eqid 2738 . . . . . . . . . . . 12 ∅ = ∅
7570, 72vtxdg0e 27744 . . . . . . . . . . . 12 ((0 ∈ (0...3) ∧ ∅ = ∅) → ((VtxDeg‘⟨(0...3), ∅⟩)‘0) = 0)
768, 74, 75mp2an 688 . . . . . . . . . . 11 ((VtxDeg‘⟨(0...3), ∅⟩)‘0) = 0
77 1nn0 12179 . . . . . . . . . . . 12 1 ∈ ℕ0
78 1le3 12115 . . . . . . . . . . . 12 1 ≤ 3
79 elfz2nn0 13276 . . . . . . . . . . . 12 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
8077, 6, 78, 79mpbir3an 1339 . . . . . . . . . . 11 1 ∈ (0...3)
81 ax-1ne0 10871 . . . . . . . . . . 11 1 ≠ 0
82 s0s1 14563 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ = (∅ ++ ⟨“{0, 1}”⟩)
8362, 82eqtri 2766 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (∅ ++ ⟨“{0, 1}”⟩)
8470, 8, 72, 73, 76, 60, 80, 81, 83vdegp1bi 27807 . . . . . . . . . 10 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘0) = (0 + 1)
85 0p1e1 12025 . . . . . . . . . 10 (0 + 1) = 1
8684, 85eqtri 2766 . . . . . . . . 9 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘0) = 1
87 2nn0 12180 . . . . . . . . . 10 2 ∈ ℕ0
88 2re 11977 . . . . . . . . . . 11 2 ∈ ℝ
89 3re 11983 . . . . . . . . . . 11 3 ∈ ℝ
90 2lt3 12075 . . . . . . . . . . 11 2 < 3
9188, 89, 90ltleii 11028 . . . . . . . . . 10 2 ≤ 3
92 elfz2nn0 13276 . . . . . . . . . 10 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
9387, 6, 91, 92mpbir3an 1339 . . . . . . . . 9 2 ∈ (0...3)
94 2ne0 12007 . . . . . . . . 9 2 ≠ 0
95 df-s2 14489 . . . . . . . . . 10 ⟨“{0, 1} {0, 2}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
9652, 95eqtri 2766 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
9761, 8, 63, 67, 86, 50, 93, 94, 96vdegp1bi 27807 . . . . . . . 8 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)‘0) = (1 + 1)
98 1p1e2 12028 . . . . . . . 8 (1 + 1) = 2
9997, 98eqtri 2766 . . . . . . 7 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)‘0) = 2
100 nn0fz0 13283 . . . . . . . 8 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
1016, 100mpbi 229 . . . . . . 7 3 ∈ (0...3)
102 3ne0 12009 . . . . . . 7 3 ≠ 0
103 df-s3 14490 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10442, 103eqtri 2766 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10551, 8, 53, 57, 99, 40, 101, 102, 104vdegp1bi 27807 . . . . . 6 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘0) = (2 + 1)
106 2p1e3 12045 . . . . . 6 (2 + 1) = 3
107105, 106eqtri 2766 . . . . 5 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘0) = 3
108 df-s4 14491 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10932, 108eqtri 2766 . . . . 5 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
11041, 8, 43, 47, 107, 30, 80, 81, 93, 94, 109vdegp1ai 27806 . . . 4 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘0) = 3
111 df-s5 14492 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11222, 111eqtri 2766 . . . 4 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11331, 8, 33, 37, 110, 20, 80, 81, 93, 94, 112vdegp1ai 27806 . . 3 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘0) = 3
114 df-s6 14493 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
1159, 114eqtri 2766 . . 3 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11621, 8, 23, 27, 113, 4, 93, 94, 101, 102, 115vdegp1ai 27806 . 2 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘0) = 3
117 konigsberg.v . . 3 𝑉 = (0...3)
118 konigsberg.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
119 konigsberg.g . . 3 𝐺 = ⟨𝑉, 𝐸
120117, 118, 119konigsbergvtx 28511 . 2 (Vtx‘𝐺) = (0...3)
121117, 118, 119konigsbergiedg 28512 . . 3 (iEdg‘𝐺) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
122121, 12eqtri 2766 . 2 (iEdg‘𝐺) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
1235, 8, 10, 17, 116, 120, 93, 94, 101, 102, 122vdegp1ai 27806 1 ((VtxDeg‘𝐺)‘0) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  c0 4253  𝒫 cpw 4530  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  2c2 11958  3c3 11959  0cn0 12163  ...cfz 13168  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  ⟨“cs2 14482  ⟨“cs3 14483  ⟨“cs4 14484  ⟨“cs5 14485  ⟨“cs6 14486  ⟨“cs7 14487  Vtxcvtx 27269  iEdgciedg 27270  VtxDegcvtxdg 27735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-s4 14491  df-s5 14492  df-s6 14493  df-s7 14494  df-vtx 27271  df-iedg 27272  df-vtxdg 27736
This theorem is referenced by:  konigsberglem4  28520
  Copyright terms: Public domain W3C validator