Detailed syntax breakdown of Definition df-seqs
| Step | Hyp | Ref
| Expression |
| 1 | | c.pl |
. . 3
class + |
| 2 | | cF |
. . 3
class 𝐹 |
| 3 | | cM |
. . 3
class 𝑀 |
| 4 | 1, 2, 3 | cseqs 28279 |
. 2
class
seqs𝑀(
+ , 𝐹) |
| 5 | | vx |
. . . . 5
setvar 𝑥 |
| 6 | | vy |
. . . . 5
setvar 𝑦 |
| 7 | | cvv 3479 |
. . . . 5
class
V |
| 8 | 5 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 9 | | c1s 27858 |
. . . . . . 7
class
1s |
| 10 | | cadds 27982 |
. . . . . . 7
class
+s |
| 11 | 8, 9, 10 | co 7429 |
. . . . . 6
class (𝑥 +s 1s
) |
| 12 | 6 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 13 | 11, 2 | cfv 6559 |
. . . . . . 7
class (𝐹‘(𝑥 +s 1s
)) |
| 14 | 12, 13, 1 | co 7429 |
. . . . . 6
class (𝑦 + (𝐹‘(𝑥 +s 1s
))) |
| 15 | 11, 14 | cop 4630 |
. . . . 5
class
〈(𝑥
+s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s
)))〉 |
| 16 | 5, 6, 7, 7, 15 | cmpo 7431 |
. . . 4
class (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s
)))〉) |
| 17 | 3, 2 | cfv 6559 |
. . . . 5
class (𝐹‘𝑀) |
| 18 | 3, 17 | cop 4630 |
. . . 4
class
〈𝑀, (𝐹‘𝑀)〉 |
| 19 | 16, 18 | crdg 8445 |
. . 3
class
rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) |
| 20 | | com 7883 |
. . 3
class
ω |
| 21 | 19, 20 | cima 5686 |
. 2
class
(rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| 22 | 4, 21 | wceq 1540 |
1
wff
seqs𝑀(
+ , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |