MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-seqs Structured version   Visualization version   GIF version

Definition df-seqs 28258
Description: Define a general-purpose sequence builder for surreal numbers. Compare df-seq 14022. Note that in the theorems we develop here, we do not require 𝑀 to be an integer. This is because there are infinite surreal numbers and we may want to start our sequence there. (Contributed by Scott Fenton, 18-Apr-2025.)
Assertion
Ref Expression
df-seqs seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝑀,𝑦   𝑥,𝐹,𝑦

Detailed syntax breakdown of Definition df-seqs
StepHypRef Expression
1 c.pl . . 3 class +
2 cF . . 3 class 𝐹
3 cM . . 3 class 𝑀
41, 2, 3cseqs 28257 . 2 class seqs𝑀( + , 𝐹)
5 vx . . . . 5 setvar 𝑥
6 vy . . . . 5 setvar 𝑦
7 cvv 3462 . . . . 5 class V
85cv 1533 . . . . . . 7 class 𝑥
9 c1s 27853 . . . . . . 7 class 1s
10 cadds 27973 . . . . . . 7 class +s
118, 9, 10co 7424 . . . . . 6 class (𝑥 +s 1s )
126cv 1533 . . . . . . 7 class 𝑦
1311, 2cfv 6554 . . . . . . 7 class (𝐹‘(𝑥 +s 1s ))
1412, 13, 1co 7424 . . . . . 6 class (𝑦 + (𝐹‘(𝑥 +s 1s )))
1511, 14cop 4639 . . . . 5 class ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩
165, 6, 7, 7, 15cmpo 7426 . . . 4 class (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩)
173, 2cfv 6554 . . . . 5 class (𝐹𝑀)
183, 17cop 4639 . . . 4 class 𝑀, (𝐹𝑀)⟩
1916, 18crdg 8439 . . 3 class rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩)
20 com 7876 . . 3 class ω
2119, 20cima 5685 . 2 class (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
224, 21wceq 1534 1 wff seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
Colors of variables: wff setvar class
This definition is referenced by:  seqsex  28259  seqseq123d  28260  nfseqs  28261  seqsval  28262
  Copyright terms: Public domain W3C validator