Detailed syntax breakdown of Definition df-seqs
Step | Hyp | Ref
| Expression |
1 | | c.pl |
. . 3
class + |
2 | | cF |
. . 3
class 𝐹 |
3 | | cM |
. . 3
class 𝑀 |
4 | 1, 2, 3 | cseqs 28257 |
. 2
class
seqs𝑀(
+ , 𝐹) |
5 | | vx |
. . . . 5
setvar 𝑥 |
6 | | vy |
. . . . 5
setvar 𝑦 |
7 | | cvv 3462 |
. . . . 5
class
V |
8 | 5 | cv 1533 |
. . . . . . 7
class 𝑥 |
9 | | c1s 27853 |
. . . . . . 7
class
1s |
10 | | cadds 27973 |
. . . . . . 7
class
+s |
11 | 8, 9, 10 | co 7424 |
. . . . . 6
class (𝑥 +s 1s
) |
12 | 6 | cv 1533 |
. . . . . . 7
class 𝑦 |
13 | 11, 2 | cfv 6554 |
. . . . . . 7
class (𝐹‘(𝑥 +s 1s
)) |
14 | 12, 13, 1 | co 7424 |
. . . . . 6
class (𝑦 + (𝐹‘(𝑥 +s 1s
))) |
15 | 11, 14 | cop 4639 |
. . . . 5
class
〈(𝑥
+s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s
)))〉 |
16 | 5, 6, 7, 7, 15 | cmpo 7426 |
. . . 4
class (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s
)))〉) |
17 | 3, 2 | cfv 6554 |
. . . . 5
class (𝐹‘𝑀) |
18 | 3, 17 | cop 4639 |
. . . 4
class
〈𝑀, (𝐹‘𝑀)〉 |
19 | 16, 18 | crdg 8439 |
. . 3
class
rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) |
20 | | com 7876 |
. . 3
class
ω |
21 | 19, 20 | cima 5685 |
. 2
class
(rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |
22 | 4, 21 | wceq 1534 |
1
wff
seqs𝑀(
+ , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |