MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqseq123d Structured version   Visualization version   GIF version

Theorem seqseq123d 28237
Description: Equality deduction for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
seqseq123d.1 (𝜑𝑀 = 𝑁)
seqseq123d.2 (𝜑+ = 𝑄)
seqseq123d.3 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
seqseq123d (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺))

Proof of Theorem seqseq123d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqseq123d.2 . . . . . . . 8 (𝜑+ = 𝑄)
21oveqd 7427 . . . . . . 7 (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐹‘(𝑥 +s 1s ))))
3 seqseq123d.3 . . . . . . . . 9 (𝜑𝐹 = 𝐺)
43fveq1d 6883 . . . . . . . 8 (𝜑 → (𝐹‘(𝑥 +s 1s )) = (𝐺‘(𝑥 +s 1s )))
54oveq2d 7426 . . . . . . 7 (𝜑 → (𝑦𝑄(𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s ))))
62, 5eqtrd 2771 . . . . . 6 (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s ))))
76opeq2d 4861 . . . . 5 (𝜑 → ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩ = ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩)
87mpoeq3dv 7491 . . . 4 (𝜑 → (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩))
9 seqseq123d.1 . . . . 5 (𝜑𝑀 = 𝑁)
103, 9fveq12d 6888 . . . . 5 (𝜑 → (𝐹𝑀) = (𝐺𝑁))
119, 10opeq12d 4862 . . . 4 (𝜑 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐺𝑁)⟩)
12 rdgeq12 8432 . . . 4 (((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩) ∧ ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐺𝑁)⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩))
138, 11, 12syl2anc 584 . . 3 (𝜑 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩))
1413imaeq1d 6051 . 2 (𝜑 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩) “ ω))
15 df-seqs 28235 . 2 seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
16 df-seqs 28235 . 2 seqs𝑁(𝑄, 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩) “ ω)
1714, 15, 163eqtr4g 2796 1 (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3464  cop 4612  cima 5662  cfv 6536  (class class class)co 7410  cmpo 7412  ωcom 7866  reccrdg 8428   1s c1s 27792   +s cadds 27923  seqscseqs 28234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-xp 5665  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-seqs 28235
This theorem is referenced by:  expsval  28368
  Copyright terms: Public domain W3C validator