MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqseq123d Structured version   Visualization version   GIF version

Theorem seqseq123d 28214
Description: Equality deduction for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
seqseq123d.1 (𝜑𝑀 = 𝑁)
seqseq123d.2 (𝜑+ = 𝑄)
seqseq123d.3 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
seqseq123d (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺))

Proof of Theorem seqseq123d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqseq123d.2 . . . . . . . 8 (𝜑+ = 𝑄)
21oveqd 7363 . . . . . . 7 (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐹‘(𝑥 +s 1s ))))
3 seqseq123d.3 . . . . . . . . 9 (𝜑𝐹 = 𝐺)
43fveq1d 6824 . . . . . . . 8 (𝜑 → (𝐹‘(𝑥 +s 1s )) = (𝐺‘(𝑥 +s 1s )))
54oveq2d 7362 . . . . . . 7 (𝜑 → (𝑦𝑄(𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s ))))
62, 5eqtrd 2766 . . . . . 6 (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s ))))
76opeq2d 4832 . . . . 5 (𝜑 → ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩ = ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩)
87mpoeq3dv 7425 . . . 4 (𝜑 → (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩))
9 seqseq123d.1 . . . . 5 (𝜑𝑀 = 𝑁)
103, 9fveq12d 6829 . . . . 5 (𝜑 → (𝐹𝑀) = (𝐺𝑁))
119, 10opeq12d 4833 . . . 4 (𝜑 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐺𝑁)⟩)
12 rdgeq12 8332 . . . 4 (((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩) ∧ ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐺𝑁)⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩))
138, 11, 12syl2anc 584 . . 3 (𝜑 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩))
1413imaeq1d 6008 . 2 (𝜑 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩) “ ω))
15 df-seqs 28212 . 2 seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
16 df-seqs 28212 . 2 seqs𝑁(𝑄, 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩) “ ω)
1714, 15, 163eqtr4g 2791 1 (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3436  cop 4582  cima 5619  cfv 6481  (class class class)co 7346  cmpo 7348  ωcom 7796  reccrdg 8328   1s c1s 27765   +s cadds 27900  seqscseqs 28211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-xp 5622  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqs 28212
This theorem is referenced by:  expsval  28346
  Copyright terms: Public domain W3C validator