MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqseq123d Structured version   Visualization version   GIF version

Theorem seqseq123d 28260
Description: Equality deduction for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
seqseq123d.1 (𝜑𝑀 = 𝑁)
seqseq123d.2 (𝜑+ = 𝑄)
seqseq123d.3 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
seqseq123d (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺))

Proof of Theorem seqseq123d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqseq123d.2 . . . . . . . 8 (𝜑+ = 𝑄)
21oveqd 7441 . . . . . . 7 (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐹‘(𝑥 +s 1s ))))
3 seqseq123d.3 . . . . . . . . 9 (𝜑𝐹 = 𝐺)
43fveq1d 6903 . . . . . . . 8 (𝜑 → (𝐹‘(𝑥 +s 1s )) = (𝐺‘(𝑥 +s 1s )))
54oveq2d 7440 . . . . . . 7 (𝜑 → (𝑦𝑄(𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s ))))
62, 5eqtrd 2766 . . . . . 6 (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s ))))
76opeq2d 4886 . . . . 5 (𝜑 → ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩ = ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩)
87mpoeq3dv 7504 . . . 4 (𝜑 → (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩))
9 seqseq123d.1 . . . . 5 (𝜑𝑀 = 𝑁)
103, 9fveq12d 6908 . . . . 5 (𝜑 → (𝐹𝑀) = (𝐺𝑁))
119, 10opeq12d 4887 . . . 4 (𝜑 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐺𝑁)⟩)
12 rdgeq12 8443 . . . 4 (((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩) ∧ ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐺𝑁)⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩))
138, 11, 12syl2anc 582 . . 3 (𝜑 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩))
1413imaeq1d 6068 . 2 (𝜑 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩) “ ω))
15 df-seqs 28258 . 2 seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
16 df-seqs 28258 . 2 seqs𝑁(𝑄, 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))⟩), ⟨𝑁, (𝐺𝑁)⟩) “ ω)
1714, 15, 163eqtr4g 2791 1 (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  Vcvv 3462  cop 4639  cima 5685  cfv 6554  (class class class)co 7424  cmpo 7426  ωcom 7876  reccrdg 8439   1s c1s 27853   +s cadds 27973  seqscseqs 28257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-xp 5688  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-iota 6506  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-seqs 28258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator