Step | Hyp | Ref
| Expression |
1 | | seqseq123d.2 |
. . . . . . . 8
⊢ (𝜑 → + = 𝑄) |
2 | 1 | oveqd 7441 |
. . . . . . 7
⊢ (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐹‘(𝑥 +s 1s
)))) |
3 | | seqseq123d.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = 𝐺) |
4 | 3 | fveq1d 6903 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(𝑥 +s 1s )) = (𝐺‘(𝑥 +s 1s
))) |
5 | 4 | oveq2d 7440 |
. . . . . . 7
⊢ (𝜑 → (𝑦𝑄(𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s
)))) |
6 | 2, 5 | eqtrd 2766 |
. . . . . 6
⊢ (𝜑 → (𝑦 + (𝐹‘(𝑥 +s 1s ))) = (𝑦𝑄(𝐺‘(𝑥 +s 1s
)))) |
7 | 6 | opeq2d 4886 |
. . . . 5
⊢ (𝜑 → 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉 =
〈(𝑥 +s
1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s
)))〉) |
8 | 7 | mpoeq3dv 7504 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉) =
(𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ),
(𝑦𝑄(𝐺‘(𝑥 +s 1s
)))〉)) |
9 | | seqseq123d.1 |
. . . . 5
⊢ (𝜑 → 𝑀 = 𝑁) |
10 | 3, 9 | fveq12d 6908 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑀) = (𝐺‘𝑁)) |
11 | 9, 10 | opeq12d 4887 |
. . . 4
⊢ (𝜑 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐺‘𝑁)〉) |
12 | | rdgeq12 8443 |
. . . 4
⊢ (((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉) =
(𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ),
(𝑦𝑄(𝐺‘(𝑥 +s 1s )))〉) ∧
〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐺‘𝑁)〉) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))〉),
〈𝑁, (𝐺‘𝑁)〉)) |
13 | 8, 11, 12 | syl2anc 582 |
. . 3
⊢ (𝜑 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))〉),
〈𝑁, (𝐺‘𝑁)〉)) |
14 | 13 | imaeq1d 6068 |
. 2
⊢ (𝜑 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))〉),
〈𝑁, (𝐺‘𝑁)〉) “ ω)) |
15 | | df-seqs 28258 |
. 2
⊢
seqs𝑀(
+ , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |
16 | | df-seqs 28258 |
. 2
⊢
seqs𝑁(𝑄, 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦𝑄(𝐺‘(𝑥 +s 1s )))〉),
〈𝑁, (𝐺‘𝑁)〉) “ ω) |
17 | 14, 15, 16 | 3eqtr4g 2791 |
1
⊢ (𝜑 → seqs𝑀( + , 𝐹) = seqs𝑁(𝑄, 𝐺)) |