Proof of Theorem seqsval
Step | Hyp | Ref
| Expression |
1 | | df-seqs 28308 |
. . 3
⊢
seqs𝑀(
+ , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |
2 | | eqid 2740 |
. . . . . 6
⊢ V =
V |
3 | | fvoveq1 7471 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝐹‘(𝑧 +s 1s )) = (𝐹‘(𝑥 +s 1s
))) |
4 | 3 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 +s 1s ))) = (𝑤 + (𝐹‘(𝑥 +s 1s
)))) |
5 | | oveq1 7455 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 +s 1s ))) = (𝑦 + (𝐹‘(𝑥 +s 1s
)))) |
6 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s )))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s
)))) |
7 | | ovex 7481 |
. . . . . . . . 9
⊢ (𝑦 + (𝐹‘(𝑥 +s 1s ))) ∈
V |
8 | 4, 5, 6, 7 | ovmpo 7610 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦) = (𝑦 + (𝐹‘(𝑥 +s 1s
)))) |
9 | 8 | el2v 3495 |
. . . . . . 7
⊢ (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦) = (𝑦 + (𝐹‘(𝑥 +s 1s
))) |
10 | 9 | opeq2i 4901 |
. . . . . 6
⊢
〈(𝑥
+s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉 = 〈(𝑥 +s 1s ),
(𝑦 + (𝐹‘(𝑥 +s 1s
)))〉 |
11 | 2, 2, 10 | mpoeq123i 7526 |
. . . . 5
⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s
)))〉) |
12 | | rdgeq1 8467 |
. . . . 5
⊢ ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉)
→ rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉)) |
13 | 11, 12 | ax-mp 5 |
. . . 4
⊢
rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) |
14 | 13 | imaeq1i 6086 |
. . 3
⊢
(rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |
15 | | df-ima 5713 |
. . 3
⊢
(rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 +s
1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) |
16 | 1, 14, 15 | 3eqtr2i 2774 |
. 2
⊢
seqs𝑀(
+ , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) |
17 | | seqsval.1 |
. . 3
⊢ (𝜑 → 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) |
18 | 17 | rneqd 5963 |
. 2
⊢ (𝜑 → ran 𝑅 = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω)) |
19 | 16, 18 | eqtr4id 2799 |
1
⊢ (𝜑 → seqs𝑀( + , 𝐹) = ran 𝑅) |