MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsval Structured version   Visualization version   GIF version

Theorem seqsval 28231
Description: The value of the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypothesis
Ref Expression
seqsval.1 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
Assertion
Ref Expression
seqsval (𝜑 → seqs𝑀( + , 𝐹) = ran 𝑅)
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤, + ,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)   𝑀(𝑧,𝑤)

Proof of Theorem seqsval
StepHypRef Expression
1 df-seqs 28227 . . 3 seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 eqid 2734 . . . . . 6 V = V
3 fvoveq1 7436 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹‘(𝑧 +s 1s )) = (𝐹‘(𝑥 +s 1s )))
43oveq2d 7429 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 +s 1s ))) = (𝑤 + (𝐹‘(𝑥 +s 1s ))))
5 oveq1 7420 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 +s 1s ))) = (𝑦 + (𝐹‘(𝑥 +s 1s ))))
6 eqid 2734 . . . . . . . . 9 (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s )))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))
7 ovex 7446 . . . . . . . . 9 (𝑦 + (𝐹‘(𝑥 +s 1s ))) ∈ V
84, 5, 6, 7ovmpo 7575 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦) = (𝑦 + (𝐹‘(𝑥 +s 1s ))))
98el2v 3470 . . . . . . 7 (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦) = (𝑦 + (𝐹‘(𝑥 +s 1s )))
109opeq2i 4857 . . . . . 6 ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩ = ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩
112, 2, 10mpoeq123i 7491 . . . . 5 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩)
12 rdgeq1 8433 . . . . 5 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩))
1311, 12ax-mp 5 . . . 4 rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩)
1413imaeq1i 6055 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
15 df-ima 5678 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω)
161, 14, 153eqtr2i 2763 . 2 seqs𝑀( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω)
17 seqsval.1 . . 3 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1817rneqd 5929 . 2 (𝜑 → ran 𝑅 = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1916, 18eqtr4id 2788 1 (𝜑 → seqs𝑀( + , 𝐹) = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3463  cop 4612  ran crn 5666  cres 5667  cima 5668  cfv 6541  (class class class)co 7413  cmpo 7415  ωcom 7869  reccrdg 8431   1s c1s 27805   +s cadds 27929  seqscseqs 28226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-seqs 28227
This theorem is referenced by:  seqsfn  28252  seqs1  28253  seqsp1  28254
  Copyright terms: Public domain W3C validator