MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqsval Structured version   Visualization version   GIF version

Theorem seqsval 28309
Description: The value of the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypothesis
Ref Expression
seqsval.1 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
Assertion
Ref Expression
seqsval (𝜑 → seqs𝑀( + , 𝐹) = ran 𝑅)
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤, + ,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)   𝑀(𝑧,𝑤)

Proof of Theorem seqsval
StepHypRef Expression
1 df-seqs 28305 . . 3 seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 eqid 2735 . . . . . 6 V = V
3 fvoveq1 7454 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹‘(𝑧 +s 1s )) = (𝐹‘(𝑥 +s 1s )))
43oveq2d 7447 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 +s 1s ))) = (𝑤 + (𝐹‘(𝑥 +s 1s ))))
5 oveq1 7438 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 +s 1s ))) = (𝑦 + (𝐹‘(𝑥 +s 1s ))))
6 eqid 2735 . . . . . . . . 9 (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s )))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))
7 ovex 7464 . . . . . . . . 9 (𝑦 + (𝐹‘(𝑥 +s 1s ))) ∈ V
84, 5, 6, 7ovmpo 7593 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦) = (𝑦 + (𝐹‘(𝑥 +s 1s ))))
98el2v 3485 . . . . . . 7 (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦) = (𝑦 + (𝐹‘(𝑥 +s 1s )))
109opeq2i 4882 . . . . . 6 ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩ = ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩
112, 2, 10mpoeq123i 7509 . . . . 5 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩)
12 rdgeq1 8450 . . . . 5 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩))
1311, 12ax-mp 5 . . . 4 rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩)
1413imaeq1i 6077 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
15 df-ima 5702 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω)
161, 14, 153eqtr2i 2769 . 2 seqs𝑀( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω)
17 seqsval.1 . . 3 (𝜑𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1817rneqd 5952 . 2 (𝜑 → ran 𝑅 = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 +s 1s ))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω))
1916, 18eqtr4id 2794 1 (𝜑 → seqs𝑀( + , 𝐹) = ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3478  cop 4637  ran crn 5690  cres 5691  cima 5692  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  reccrdg 8448   1s c1s 27883   +s cadds 28007  seqscseqs 28304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seqs 28305
This theorem is referenced by:  seqsfn  28330  seqs1  28331  seqsp1  28332
  Copyright terms: Public domain W3C validator