MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-seq Structured version   Visualization version   GIF version

Definition df-seq 13927
Description: Define a general-purpose operation that builds a recursive sequence (i.e., a function on an upper integer set such as or 0) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seq1 13939 and seqp1 13941. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2". Since limits are unique (climuni 15477), by climdm 15479 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the rec function generates as its values a set of ordered pairs starting at 𝑀, (𝐹𝑀)⟩, with the first member of each pair incremented by one in each successive value. So, the range of rec is exactly the sequence we want, and we just extract the range (restricted to omega) and throw away the domain.

This definition has its roots in a series of theorems from om2uz0i 13872 through om2uzf1oi 13878, originally proved by Raph Levien for use with df-exp 13987 and later generalized for arbitrary recursive sequences. Definition df-sum 15612 extracts the summation values from partial (finite) and complete (infinite) series. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 4-Sep-2013.)

Assertion
Ref Expression
df-seq seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦

Detailed syntax breakdown of Definition df-seq
StepHypRef Expression
1 c.pl . . 3 class +
2 cF . . 3 class 𝐹
3 cM . . 3 class 𝑀
41, 2, 3cseq 13926 . 2 class seq𝑀( + , 𝐹)
5 vx . . . . 5 setvar 𝑥
6 vy . . . . 5 setvar 𝑦
7 cvv 3438 . . . . 5 class V
85cv 1539 . . . . . . 7 class 𝑥
9 c1 11029 . . . . . . 7 class 1
10 caddc 11031 . . . . . . 7 class +
118, 9, 10co 7353 . . . . . 6 class (𝑥 + 1)
126cv 1539 . . . . . . 7 class 𝑦
1311, 2cfv 6486 . . . . . . 7 class (𝐹‘(𝑥 + 1))
1412, 13, 1co 7353 . . . . . 6 class (𝑦 + (𝐹‘(𝑥 + 1)))
1511, 14cop 4585 . . . . 5 class ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩
165, 6, 7, 7, 15cmpo 7355 . . . 4 class (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)
173, 2cfv 6486 . . . . 5 class (𝐹𝑀)
183, 17cop 4585 . . . 4 class 𝑀, (𝐹𝑀)⟩
1916, 18crdg 8338 . . 3 class rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
20 com 7806 . . 3 class ω
2119, 20cima 5626 . 2 class (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
224, 21wceq 1540 1 wff seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
Colors of variables: wff setvar class
This definition is referenced by:  seqex  13928  seqeq1  13929  seqeq2  13930  seqeq3  13931  nfseq  13936  seqval  13937
  Copyright terms: Public domain W3C validator