MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfseqs Structured version   Visualization version   GIF version

Theorem nfseqs 28181
Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
nfseqs.1 𝑥𝑀
nfseqs.2 𝑥 +
nfseqs.3 𝑥𝐹
Assertion
Ref Expression
nfseqs 𝑥seqs𝑀( + , 𝐹)

Proof of Theorem nfseqs
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqs 28178 . 2 seqs𝑀( + , 𝐹) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 nfcv 2891 . . . . 5 𝑥V
3 nfcv 2891 . . . . . 6 𝑥(𝑦 +s 1s )
4 nfcv 2891 . . . . . . 7 𝑥𝑧
5 nfseqs.2 . . . . . . 7 𝑥 +
6 nfseqs.3 . . . . . . . 8 𝑥𝐹
76, 3nffv 6868 . . . . . . 7 𝑥(𝐹‘(𝑦 +s 1s ))
84, 5, 7nfov 7417 . . . . . 6 𝑥(𝑧 + (𝐹‘(𝑦 +s 1s )))
93, 8nfop 4853 . . . . 5 𝑥⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩
102, 2, 9nfmpo 7471 . . . 4 𝑥(𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩)
11 nfseqs.1 . . . . 5 𝑥𝑀
126, 11nffv 6868 . . . . 5 𝑥(𝐹𝑀)
1311, 12nfop 4853 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1410, 13nfrdg 8382 . . 3 𝑥rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 nfcv 2891 . . 3 𝑥ω
1614, 15nfima 6039 . 2 𝑥(rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
171, 16nfcxfr 2889 1 𝑥seqs𝑀( + , 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  Vcvv 3447  cop 4595  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842  reccrdg 8377   1s c1s 27735   +s cadds 27866  seqscseqs 28177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqs 28178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator