MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfseqs Structured version   Visualization version   GIF version

Theorem nfseqs 28220
Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
nfseqs.1 𝑥𝑀
nfseqs.2 𝑥 +
nfseqs.3 𝑥𝐹
Assertion
Ref Expression
nfseqs 𝑥seqs𝑀( + , 𝐹)

Proof of Theorem nfseqs
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqs 28217 . 2 seqs𝑀( + , 𝐹) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 nfcv 2895 . . . . 5 𝑥V
3 nfcv 2895 . . . . . 6 𝑥(𝑦 +s 1s )
4 nfcv 2895 . . . . . . 7 𝑥𝑧
5 nfseqs.2 . . . . . . 7 𝑥 +
6 nfseqs.3 . . . . . . . 8 𝑥𝐹
76, 3nffv 6840 . . . . . . 7 𝑥(𝐹‘(𝑦 +s 1s ))
84, 5, 7nfov 7384 . . . . . 6 𝑥(𝑧 + (𝐹‘(𝑦 +s 1s )))
93, 8nfop 4842 . . . . 5 𝑥⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩
102, 2, 9nfmpo 7436 . . . 4 𝑥(𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩)
11 nfseqs.1 . . . . 5 𝑥𝑀
126, 11nffv 6840 . . . . 5 𝑥(𝐹𝑀)
1311, 12nfop 4842 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1410, 13nfrdg 8341 . . 3 𝑥rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 nfcv 2895 . . 3 𝑥ω
1614, 15nfima 6023 . 2 𝑥(rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
171, 16nfcxfr 2893 1 𝑥seqs𝑀( + , 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2880  Vcvv 3437  cop 4583  cima 5624  cfv 6488  (class class class)co 7354  cmpo 7356  ωcom 7804  reccrdg 8336   1s c1s 27770   +s cadds 27905  seqscseqs 28216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5627  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-iota 6444  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-seqs 28217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator