![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfseqs | Structured version Visualization version GIF version |
Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
nfseqs.1 | ⊢ Ⅎ𝑥𝑀 |
nfseqs.2 | ⊢ Ⅎ𝑥 + |
nfseqs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseqs | ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seqs 28207 | . 2 ⊢ seqs𝑀( + , 𝐹) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 +s 1s ) | |
4 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
5 | nfseqs.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
6 | nfseqs.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
7 | 6, 3 | nffv 6906 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑦 +s 1s )) |
8 | 4, 5, 7 | nfov 7449 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + (𝐹‘(𝑦 +s 1s ))) |
9 | 3, 8 | nfop 4891 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉 |
10 | 2, 2, 9 | nfmpo 7502 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉) |
11 | nfseqs.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
12 | 6, 11 | nffv 6906 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
13 | 11, 12 | nfop 4891 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
14 | 10, 13 | nfrdg 8435 | . . 3 ⊢ Ⅎ𝑥rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) |
15 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfima 6072 | . 2 ⊢ Ⅎ𝑥(rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
17 | 1, 16 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2875 Vcvv 3461 〈cop 4636 “ cima 5681 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 ωcom 7871 reccrdg 8430 1s c1s 27802 +s cadds 27922 seqscseqs 28206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5684 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-iota 6501 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-seqs 28207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |