| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfseqs | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| nfseqs.1 | ⊢ Ⅎ𝑥𝑀 |
| nfseqs.2 | ⊢ Ⅎ𝑥 + |
| nfseqs.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfseqs | ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqs 28185 | . 2 ⊢ seqs𝑀( + , 𝐹) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 +s 1s ) | |
| 4 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
| 5 | nfseqs.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 6 | nfseqs.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 7 | 6, 3 | nffv 6871 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑦 +s 1s )) |
| 8 | 4, 5, 7 | nfov 7420 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + (𝐹‘(𝑦 +s 1s ))) |
| 9 | 3, 8 | nfop 4856 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉 |
| 10 | 2, 2, 9 | nfmpo 7474 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉) |
| 11 | nfseqs.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
| 12 | 6, 11 | nffv 6871 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 13 | 11, 12 | nfop 4856 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 14 | 10, 13 | nfrdg 8385 | . . 3 ⊢ Ⅎ𝑥rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 15 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥ω | |
| 16 | 14, 15 | nfima 6042 | . 2 ⊢ Ⅎ𝑥(rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| 17 | 1, 16 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 Vcvv 3450 〈cop 4598 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ωcom 7845 reccrdg 8380 1s c1s 27742 +s cadds 27873 seqscseqs 28184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seqs 28185 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |