MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfseqs Structured version   Visualization version   GIF version

Theorem nfseqs 28210
Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
nfseqs.1 𝑥𝑀
nfseqs.2 𝑥 +
nfseqs.3 𝑥𝐹
Assertion
Ref Expression
nfseqs 𝑥seqs𝑀( + , 𝐹)

Proof of Theorem nfseqs
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqs 28207 . 2 seqs𝑀( + , 𝐹) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 nfcv 2891 . . . . 5 𝑥V
3 nfcv 2891 . . . . . 6 𝑥(𝑦 +s 1s )
4 nfcv 2891 . . . . . . 7 𝑥𝑧
5 nfseqs.2 . . . . . . 7 𝑥 +
6 nfseqs.3 . . . . . . . 8 𝑥𝐹
76, 3nffv 6906 . . . . . . 7 𝑥(𝐹‘(𝑦 +s 1s ))
84, 5, 7nfov 7449 . . . . . 6 𝑥(𝑧 + (𝐹‘(𝑦 +s 1s )))
93, 8nfop 4891 . . . . 5 𝑥⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩
102, 2, 9nfmpo 7502 . . . 4 𝑥(𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩)
11 nfseqs.1 . . . . 5 𝑥𝑀
126, 11nffv 6906 . . . . 5 𝑥(𝐹𝑀)
1311, 12nfop 4891 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1410, 13nfrdg 8435 . . 3 𝑥rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 nfcv 2891 . . 3 𝑥ω
1614, 15nfima 6072 . 2 𝑥(rec((𝑦 ∈ V, 𝑧 ∈ V ↦ ⟨(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
171, 16nfcxfr 2889 1 𝑥seqs𝑀( + , 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2875  Vcvv 3461  cop 4636  cima 5681  cfv 6549  (class class class)co 7419  cmpo 7421  ωcom 7871  reccrdg 8430   1s c1s 27802   +s cadds 27922  seqscseqs 28206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5684  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-iota 6501  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-seqs 28207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator