| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfseqs | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| nfseqs.1 | ⊢ Ⅎ𝑥𝑀 |
| nfseqs.2 | ⊢ Ⅎ𝑥 + |
| nfseqs.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfseqs | ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqs 28217 | . 2 ⊢ seqs𝑀( + , 𝐹) = (rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 +s 1s ) | |
| 4 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
| 5 | nfseqs.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 6 | nfseqs.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 7 | 6, 3 | nffv 6840 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑦 +s 1s )) |
| 8 | 4, 5, 7 | nfov 7384 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + (𝐹‘(𝑦 +s 1s ))) |
| 9 | 3, 8 | nfop 4842 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉 |
| 10 | 2, 2, 9 | nfmpo 7436 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉) |
| 11 | nfseqs.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
| 12 | 6, 11 | nffv 6840 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 13 | 11, 12 | nfop 4842 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 14 | 10, 13 | nfrdg 8341 | . . 3 ⊢ Ⅎ𝑥rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 15 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑥ω | |
| 16 | 14, 15 | nfima 6023 | . 2 ⊢ Ⅎ𝑥(rec((𝑦 ∈ V, 𝑧 ∈ V ↦ 〈(𝑦 +s 1s ), (𝑧 + (𝐹‘(𝑦 +s 1s )))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| 17 | 1, 16 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥seqs𝑀( + , 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 Vcvv 3437 〈cop 4583 “ cima 5624 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ωcom 7804 reccrdg 8336 1s c1s 27770 +s cadds 27905 seqscseqs 28216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-iota 6444 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-seqs 28217 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |