Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-span | Structured version Visualization version GIF version |
Description: Define the linear span of a subset of Hilbert space. Definition of span in [Schechter] p. 276. See spanval 29596 for its value. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-span | ⊢ span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cspn 29195 | . 2 class span | |
2 | vx | . . 3 setvar 𝑥 | |
3 | chba 29182 | . . . 4 class ℋ | |
4 | 3 | cpw 4530 | . . 3 class 𝒫 ℋ |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vy | . . . . . . 7 setvar 𝑦 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑦 |
8 | 5, 7 | wss 3883 | . . . . 5 wff 𝑥 ⊆ 𝑦 |
9 | csh 29191 | . . . . 5 class Sℋ | |
10 | 8, 6, 9 | crab 3067 | . . . 4 class {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦} |
11 | 10 | cint 4876 | . . 3 class ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦} |
12 | 2, 4, 11 | cmpt 5153 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
13 | 1, 12 | wceq 1539 | 1 wff span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
Colors of variables: wff setvar class |
This definition is referenced by: spanval 29596 |
Copyright terms: Public domain | W3C validator |