| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-span | Structured version Visualization version GIF version | ||
| Description: Define the linear span of a subset of Hilbert space. Definition of span in [Schechter] p. 276. See spanval 31319 for its value. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-span | ⊢ span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cspn 30918 | . 2 class span | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | chba 30905 | . . . 4 class ℋ | |
| 4 | 3 | cpw 4580 | . . 3 class 𝒫 ℋ |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vy | . . . . . . 7 setvar 𝑦 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑦 |
| 8 | 5, 7 | wss 3931 | . . . . 5 wff 𝑥 ⊆ 𝑦 |
| 9 | csh 30914 | . . . . 5 class Sℋ | |
| 10 | 8, 6, 9 | crab 3420 | . . . 4 class {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦} |
| 11 | 10 | cint 4927 | . . 3 class ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦} |
| 12 | 2, 4, 11 | cmpt 5206 | . 2 class (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
| 13 | 1, 12 | wceq 1540 | 1 wff span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦 ∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: spanval 31319 |
| Copyright terms: Public domain | W3C validator |