| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-shs | Structured version Visualization version GIF version | ||
| Description: Define subspace sum in Sℋ. See shsval 31298, shsval2i 31373, and shsval3i 31374 for its value. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-shs | ⊢ +ℋ = (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cph 30917 | . 2 class +ℋ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | csh 30914 | . . 3 class Sℋ | |
| 5 | cva 30906 | . . . 4 class +ℎ | |
| 6 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 7 | 3 | cv 1539 | . . . . 5 class 𝑦 |
| 8 | 6, 7 | cxp 5657 | . . . 4 class (𝑥 × 𝑦) |
| 9 | 5, 8 | cima 5662 | . . 3 class ( +ℎ “ (𝑥 × 𝑦)) |
| 10 | 2, 3, 4, 4, 9 | cmpo 7412 | . 2 class (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) |
| 11 | 1, 10 | wceq 1540 | 1 wff +ℋ = (𝑥 ∈ Sℋ , 𝑦 ∈ Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: shsval 31298 |
| Copyright terms: Public domain | W3C validator |