| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanval | Structured version Visualization version GIF version | ||
| Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanval | ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-span 31271 | . 2 ⊢ span = (𝑦 ∈ 𝒫 ℋ ↦ ∩ {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥}) | |
| 2 | sseq1 3963 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | rabbidv 3404 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 4 | 3 | inteqd 4904 | . 2 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 5 | ax-hilex 30961 | . . . 4 ⊢ ℋ ∈ V | |
| 6 | 5 | elpw2 5276 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
| 7 | 6 | biimpri 228 | . 2 ⊢ (𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ) |
| 8 | helsh 31207 | . . . 4 ⊢ ℋ ∈ Sℋ | |
| 9 | sseq2 3964 | . . . . 5 ⊢ (𝑥 = ℋ → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ)) | |
| 10 | 9 | rspcev 3579 | . . . 4 ⊢ (( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ) → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
| 11 | 8, 10 | mpan 690 | . . 3 ⊢ (𝐴 ⊆ ℋ → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
| 12 | intexrab 5289 | . . 3 ⊢ (∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ V) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ (𝐴 ⊆ ℋ → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ V) |
| 14 | 1, 4, 7, 13 | fvmptd3 6957 | 1 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∩ cint 4899 ‘cfv 6486 ℋchba 30881 Sℋ csh 30890 spancspn 30894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 ax-hilex 30961 ax-hfvadd 30962 ax-hv0cl 30965 ax-hfvmul 30967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-map 8762 df-nn 12147 df-hlim 30934 df-sh 31169 df-ch 31183 df-span 31271 |
| This theorem is referenced by: spancl 31298 spanss2 31307 spanid 31309 spanss 31310 shsval3i 31350 elspani 31505 |
| Copyright terms: Public domain | W3C validator |