| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanval | Structured version Visualization version GIF version | ||
| Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanval | ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-span 31238 | . 2 ⊢ span = (𝑦 ∈ 𝒫 ℋ ↦ ∩ {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥}) | |
| 2 | sseq1 3972 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | rabbidv 3413 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 4 | 3 | inteqd 4915 | . 2 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 5 | ax-hilex 30928 | . . . 4 ⊢ ℋ ∈ V | |
| 6 | 5 | elpw2 5289 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
| 7 | 6 | biimpri 228 | . 2 ⊢ (𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ) |
| 8 | helsh 31174 | . . . 4 ⊢ ℋ ∈ Sℋ | |
| 9 | sseq2 3973 | . . . . 5 ⊢ (𝑥 = ℋ → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ)) | |
| 10 | 9 | rspcev 3588 | . . . 4 ⊢ (( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ) → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
| 11 | 8, 10 | mpan 690 | . . 3 ⊢ (𝐴 ⊆ ℋ → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
| 12 | intexrab 5302 | . . 3 ⊢ (∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ V) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ (𝐴 ⊆ ℋ → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ V) |
| 14 | 1, 4, 7, 13 | fvmptd3 6991 | 1 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∩ cint 4910 ‘cfv 6511 ℋchba 30848 Sℋ csh 30857 spancspn 30861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 ax-hilex 30928 ax-hfvadd 30929 ax-hv0cl 30932 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-hlim 30901 df-sh 31136 df-ch 31150 df-span 31238 |
| This theorem is referenced by: spancl 31265 spanss2 31274 spanid 31276 spanss 31277 shsval3i 31317 elspani 31472 |
| Copyright terms: Public domain | W3C validator |