| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > spanval | Structured version Visualization version GIF version | ||
| Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spanval | ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-span 31244 | . 2 ⊢ span = (𝑦 ∈ 𝒫 ℋ ↦ ∩ {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥}) | |
| 2 | sseq1 3974 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | rabbidv 3416 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥} = {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 4 | 3 | inteqd 4917 | . 2 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| 5 | ax-hilex 30934 | . . . 4 ⊢ ℋ ∈ V | |
| 6 | 5 | elpw2 5291 | . . 3 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
| 7 | 6 | biimpri 228 | . 2 ⊢ (𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ) |
| 8 | helsh 31180 | . . . 4 ⊢ ℋ ∈ Sℋ | |
| 9 | sseq2 3975 | . . . . 5 ⊢ (𝑥 = ℋ → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ)) | |
| 10 | 9 | rspcev 3591 | . . . 4 ⊢ (( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ) → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
| 11 | 8, 10 | mpan 690 | . . 3 ⊢ (𝐴 ⊆ ℋ → ∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥) |
| 12 | intexrab 5304 | . . 3 ⊢ (∃𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ↔ ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ V) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ (𝐴 ⊆ ℋ → ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥} ∈ V) |
| 14 | 1, 4, 7, 13 | fvmptd3 6993 | 1 ⊢ (𝐴 ⊆ ℋ → (span‘𝐴) = ∩ {𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3916 𝒫 cpw 4565 ∩ cint 4912 ‘cfv 6513 ℋchba 30854 Sℋ csh 30863 spancspn 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-1cn 11132 ax-addcl 11134 ax-hilex 30934 ax-hfvadd 30935 ax-hv0cl 30938 ax-hfvmul 30940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-map 8803 df-nn 12188 df-hlim 30907 df-sh 31142 df-ch 31156 df-span 31244 |
| This theorem is referenced by: spancl 31271 spanss2 31280 spanid 31282 spanss 31283 shsval3i 31323 elspani 31478 |
| Copyright terms: Public domain | W3C validator |