![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spanval | Structured version Visualization version GIF version |
Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spanval | β’ (π΄ β β β (spanβπ΄) = β© {π₯ β Sβ β£ π΄ β π₯}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-span 30549 | . 2 β’ span = (π¦ β π« β β¦ β© {π₯ β Sβ β£ π¦ β π₯}) | |
2 | sseq1 4006 | . . . 4 β’ (π¦ = π΄ β (π¦ β π₯ β π΄ β π₯)) | |
3 | 2 | rabbidv 3440 | . . 3 β’ (π¦ = π΄ β {π₯ β Sβ β£ π¦ β π₯} = {π₯ β Sβ β£ π΄ β π₯}) |
4 | 3 | inteqd 4954 | . 2 β’ (π¦ = π΄ β β© {π₯ β Sβ β£ π¦ β π₯} = β© {π₯ β Sβ β£ π΄ β π₯}) |
5 | ax-hilex 30239 | . . . 4 β’ β β V | |
6 | 5 | elpw2 5344 | . . 3 β’ (π΄ β π« β β π΄ β β) |
7 | 6 | biimpri 227 | . 2 β’ (π΄ β β β π΄ β π« β) |
8 | helsh 30485 | . . . 4 β’ β β Sβ | |
9 | sseq2 4007 | . . . . 5 β’ (π₯ = β β (π΄ β π₯ β π΄ β β)) | |
10 | 9 | rspcev 3612 | . . . 4 β’ (( β β Sβ β§ π΄ β β) β βπ₯ β Sβ π΄ β π₯) |
11 | 8, 10 | mpan 688 | . . 3 β’ (π΄ β β β βπ₯ β Sβ π΄ β π₯) |
12 | intexrab 5339 | . . 3 β’ (βπ₯ β Sβ π΄ β π₯ β β© {π₯ β Sβ β£ π΄ β π₯} β V) | |
13 | 11, 12 | sylib 217 | . 2 β’ (π΄ β β β β© {π₯ β Sβ β£ π΄ β π₯} β V) |
14 | 1, 4, 7, 13 | fvmptd3 7018 | 1 β’ (π΄ β β β (spanβπ΄) = β© {π₯ β Sβ β£ π΄ β π₯}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βwrex 3070 {crab 3432 Vcvv 3474 β wss 3947 π« cpw 4601 β© cint 4949 βcfv 6540 βchba 30159 Sβ csh 30168 spancspn 30172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 ax-hilex 30239 ax-hfvadd 30240 ax-hv0cl 30243 ax-hfvmul 30245 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-map 8818 df-nn 12209 df-hlim 30212 df-sh 30447 df-ch 30461 df-span 30549 |
This theorem is referenced by: spancl 30576 spanss2 30585 spanid 30587 spanss 30588 shsval3i 30628 elspani 30783 |
Copyright terms: Public domain | W3C validator |