HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanval Structured version   Visualization version   GIF version

Theorem spanval 31303
Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
spanval (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem spanval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-span 31279 . 2 span = (𝑦 ∈ 𝒫 ℋ ↦ {𝑥S𝑦𝑥})
2 sseq1 3958 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32rabbidv 3400 . . 3 (𝑦 = 𝐴 → {𝑥S𝑦𝑥} = {𝑥S𝐴𝑥})
43inteqd 4900 . 2 (𝑦 = 𝐴 {𝑥S𝑦𝑥} = {𝑥S𝐴𝑥})
5 ax-hilex 30969 . . . 4 ℋ ∈ V
65elpw2 5270 . . 3 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
76biimpri 228 . 2 (𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ)
8 helsh 31215 . . . 4 ℋ ∈ S
9 sseq2 3959 . . . . 5 (𝑥 = ℋ → (𝐴𝑥𝐴 ⊆ ℋ))
109rspcev 3575 . . . 4 (( ℋ ∈ S𝐴 ⊆ ℋ) → ∃𝑥S 𝐴𝑥)
118, 10mpan 690 . . 3 (𝐴 ⊆ ℋ → ∃𝑥S 𝐴𝑥)
12 intexrab 5283 . . 3 (∃𝑥S 𝐴𝑥 {𝑥S𝐴𝑥} ∈ V)
1311, 12sylib 218 . 2 (𝐴 ⊆ ℋ → {𝑥S𝐴𝑥} ∈ V)
141, 4, 7, 13fvmptd3 6947 1 (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wrex 3054  {crab 3393  Vcvv 3434  wss 3900  𝒫 cpw 4548   cint 4895  cfv 6477  chba 30889   S csh 30898  spancspn 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-1cn 11056  ax-addcl 11058  ax-hilex 30969  ax-hfvadd 30970  ax-hv0cl 30973  ax-hfvmul 30975
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-map 8747  df-nn 12118  df-hlim 30942  df-sh 31177  df-ch 31191  df-span 31279
This theorem is referenced by:  spancl  31306  spanss2  31315  spanid  31317  spanss  31318  shsval3i  31358  elspani  31513
  Copyright terms: Public domain W3C validator