HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanval Structured version   Visualization version   GIF version

Theorem spanval 31352
Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in [Schechter] p. 276. (Contributed by NM, 2-Jun-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
spanval (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem spanval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-span 31328 . 2 span = (𝑦 ∈ 𝒫 ℋ ↦ {𝑥S𝑦𝑥})
2 sseq1 4009 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32rabbidv 3444 . . 3 (𝑦 = 𝐴 → {𝑥S𝑦𝑥} = {𝑥S𝐴𝑥})
43inteqd 4951 . 2 (𝑦 = 𝐴 {𝑥S𝑦𝑥} = {𝑥S𝐴𝑥})
5 ax-hilex 31018 . . . 4 ℋ ∈ V
65elpw2 5334 . . 3 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
76biimpri 228 . 2 (𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ)
8 helsh 31264 . . . 4 ℋ ∈ S
9 sseq2 4010 . . . . 5 (𝑥 = ℋ → (𝐴𝑥𝐴 ⊆ ℋ))
109rspcev 3622 . . . 4 (( ℋ ∈ S𝐴 ⊆ ℋ) → ∃𝑥S 𝐴𝑥)
118, 10mpan 690 . . 3 (𝐴 ⊆ ℋ → ∃𝑥S 𝐴𝑥)
12 intexrab 5347 . . 3 (∃𝑥S 𝐴𝑥 {𝑥S𝐴𝑥} ∈ V)
1311, 12sylib 218 . 2 (𝐴 ⊆ ℋ → {𝑥S𝐴𝑥} ∈ V)
141, 4, 7, 13fvmptd3 7039 1 (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  𝒫 cpw 4600   cint 4946  cfv 6561  chba 30938   S csh 30947  spancspn 30951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215  ax-hilex 31018  ax-hfvadd 31019  ax-hv0cl 31022  ax-hfvmul 31024
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-map 8868  df-nn 12267  df-hlim 30991  df-sh 31226  df-ch 31240  df-span 31328
This theorem is referenced by:  spancl  31355  spanss2  31364  spanid  31366  spanss  31367  shsval3i  31407  elspani  31562
  Copyright terms: Public domain W3C validator