MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsscph Structured version   Visualization version   GIF version

Theorem cphsscph 23834
Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
cphsscph.x 𝑋 = (𝑊s 𝑈)
cphsscph.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cphsscph ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)

Proof of Theorem cphsscph
Dummy variables 𝑏 𝑞 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 23755 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 cphsscph.x . . . . 5 𝑋 = (𝑊s 𝑈)
3 cphsscph.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3phlssphl 20779 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
51, 4sylan 582 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
6 cphnlm 23756 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
72, 3lssnlm 23286 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
86, 7sylan 582 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
9 eqid 2820 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
10 eqid 2820 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
119, 10cphsca 23763 . . . . 5 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
1211adantr 483 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
132, 9resssca 16629 . . . . . 6 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413fveq2d 6650 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
1514oveq2d 7149 . . . . . 6 (𝑈𝑆 → (ℂflds (Base‘(Scalar‘𝑊))) = (ℂflds (Base‘(Scalar‘𝑋))))
1613, 15eqeq12d 2836 . . . . 5 (𝑈𝑆 → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1716adantl 484 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1812, 17mpbid 234 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋))))
195, 8, 183jca 1124 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
20 simpl 485 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑊 ∈ ℂPreHil)
21 elinel1 4150 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
2221adantr 483 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
23 elinel2 4151 . . . . . . . . . . . 12 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (0[,)+∞))
24 elrege0 12823 . . . . . . . . . . . . 13 (𝑞 ∈ (0[,)+∞) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
2524simplbi 500 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 𝑞 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ ℝ)
2726adantr 483 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ ℝ)
2824simprbi 499 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 0 ≤ 𝑞)
2923, 28syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 0 ≤ 𝑞)
3029adantr 483 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 0 ≤ 𝑞)
3122, 27, 303jca 1124 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
329, 10cphsqrtcl 23768 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
3320, 31, 32syl2anr 598 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
34 eleq1 2898 . . . . . . . . . 10 ((√‘𝑞) = 𝑥 → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3534adantl 484 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3635adantr 483 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3733, 36mpbid 234 . . . . . . 7 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
3837ex 415 . . . . . 6 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3938rexlimiva 3268 . . . . 5 (∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥 → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
40 df-sqrt 14574 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (𝑐 ∈ ℂ ((𝑐↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑐) ∧ (i · 𝑐) ∉ ℝ+)))
4140funmpt2 6370 . . . . . 6 Fun √
42 fvelima 6707 . . . . . 6 ((Fun √ ∧ 𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4341, 42mpan 688 . . . . 5 (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4439, 43syl11 33 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
4544ssrdv 3952 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)))
4614ineq1d 4166 . . . . . 6 (𝑈𝑆 → ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) = ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞)))
4746imaeq2d 5905 . . . . 5 (𝑈𝑆 → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) = (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))))
4847, 14sseq12d 3979 . . . 4 (𝑈𝑆 → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
4948adantl 484 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
5045, 49mpbid 234 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)))
51 cphlmod 23758 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
523lsssubg 19705 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
5351, 52sylan 582 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
54 eqid 2820 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
55 eqid 2820 . . . . 5 (norm‘𝑋) = (norm‘𝑋)
562, 54, 55subgnm 23218 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
5753, 56syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
58 eqid 2820 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
59 eqid 2820 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
6058, 59, 54cphnmfval 23776 . . . . . . 7 (𝑊 ∈ ℂPreHil → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
6160adantr 483 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
622, 59ressip 16631 . . . . . . . . . 10 (𝑈𝑆 → (·𝑖𝑊) = (·𝑖𝑋))
6362adantl 484 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (·𝑖𝑊) = (·𝑖𝑋))
6463oveqd 7150 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏(·𝑖𝑊)𝑏) = (𝑏(·𝑖𝑋)𝑏))
6564fveq2d 6650 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√‘(𝑏(·𝑖𝑊)𝑏)) = (√‘(𝑏(·𝑖𝑋)𝑏)))
6665mpteq2dv 5138 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6761, 66eqtrd 2855 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6858, 3lssss 19684 . . . . . . 7 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
6968adantl 484 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
70 dfss 3931 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) ↔ 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7169, 70sylib 220 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7267, 71reseq12d 5830 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))))
732, 58ressbas 16533 . . . . . 6 (𝑈𝑆 → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7473adantl 484 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7574reseq2d 5829 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
7672, 75eqtrd 2855 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
772, 58ressbasss 16535 . . . . 5 (Base‘𝑋) ⊆ (Base‘𝑊)
7877a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊))
7978resmptd 5884 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
8057, 76, 793eqtrd 2859 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
81 eqid 2820 . . 3 (Base‘𝑋) = (Base‘𝑋)
82 eqid 2820 . . 3 (·𝑖𝑋) = (·𝑖𝑋)
83 eqid 2820 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2820 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
8581, 82, 55, 83, 84iscph 23754 . 2 (𝑋 ∈ ℂPreHil ↔ ((𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))) ∧ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)) ∧ (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏)))))
8619, 50, 80, 85syl3anbrc 1339 1 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wnel 3110  wrex 3126  cin 3912  wss 3913   class class class wbr 5042  cmpt 5122  cres 5533  cima 5534  Fun wfun 6325  cfv 6331  crio 7090  (class class class)co 7133  cc 10513  cr 10514  0cc0 10515  ici 10517   · cmul 10520  +∞cpnf 10650  cle 10654  2c2 11671  +crp 12368  [,)cico 12719  cexp 13414  cre 14436  csqrt 14572  Basecbs 16462  s cress 16463  Scalarcsca 16547  ·𝑖cip 16549  SubGrpcsubg 18252  LModclmod 19610  LSubSpclss 19679  fldccnfld 20521  PreHilcphl 20744  normcnm 23162  NrmModcnlm 23166  ℂPreHilccph 23750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-ico 12723  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ds 16566  df-rest 16675  df-topn 16676  df-0g 16694  df-topgen 16696  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-ghm 18335  df-mgp 19219  df-ur 19231  df-ring 19278  df-subrg 19509  df-lmod 19612  df-lss 19680  df-lsp 19720  df-lmhm 19770  df-lvec 19851  df-sra 19920  df-rgmod 19921  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-phl 20746  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-xms 22906  df-ms 22907  df-nm 23168  df-ngp 23169  df-nlm 23172  df-cph 23752
This theorem is referenced by:  cphssphl  23954  cmslsschl  23960  chlcsschl  23961
  Copyright terms: Public domain W3C validator