MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsscph Structured version   Visualization version   GIF version

Theorem cphsscph 25184
Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
cphsscph.x 𝑋 = (𝑊s 𝑈)
cphsscph.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cphsscph ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)

Proof of Theorem cphsscph
Dummy variables 𝑏 𝑞 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 25104 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 cphsscph.x . . . . 5 𝑋 = (𝑊s 𝑈)
3 cphsscph.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3phlssphl 21601 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
51, 4sylan 580 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
6 cphnlm 25105 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
72, 3lssnlm 24622 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
86, 7sylan 580 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
9 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
10 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
119, 10cphsca 25112 . . . . 5 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
1211adantr 480 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
132, 9resssca 17282 . . . . . 6 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413fveq2d 6844 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
1514oveq2d 7385 . . . . . 6 (𝑈𝑆 → (ℂflds (Base‘(Scalar‘𝑊))) = (ℂflds (Base‘(Scalar‘𝑋))))
1613, 15eqeq12d 2745 . . . . 5 (𝑈𝑆 → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1716adantl 481 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1812, 17mpbid 232 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋))))
195, 8, 183jca 1128 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
20 simpl 482 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑊 ∈ ℂPreHil)
21 elinel1 4160 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
2221adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
23 elinel2 4161 . . . . . . . . . . . 12 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (0[,)+∞))
24 elrege0 13391 . . . . . . . . . . . . 13 (𝑞 ∈ (0[,)+∞) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
2524simplbi 497 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 𝑞 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ ℝ)
2726adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ ℝ)
2824simprbi 496 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 0 ≤ 𝑞)
2923, 28syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 0 ≤ 𝑞)
3029adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 0 ≤ 𝑞)
3122, 27, 303jca 1128 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
329, 10cphsqrtcl 25117 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
3320, 31, 32syl2anr 597 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
34 eleq1 2816 . . . . . . . . . 10 ((√‘𝑞) = 𝑥 → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3534adantl 481 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3635adantr 480 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3733, 36mpbid 232 . . . . . . 7 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
3837ex 412 . . . . . 6 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3938rexlimiva 3126 . . . . 5 (∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥 → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
40 df-sqrt 15177 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (𝑐 ∈ ℂ ((𝑐↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑐) ∧ (i · 𝑐) ∉ ℝ+)))
4140funmpt2 6539 . . . . . 6 Fun √
42 fvelima 6908 . . . . . 6 ((Fun √ ∧ 𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4341, 42mpan 690 . . . . 5 (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4439, 43syl11 33 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
4544ssrdv 3949 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)))
4614ineq1d 4178 . . . . . 6 (𝑈𝑆 → ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) = ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞)))
4746imaeq2d 6020 . . . . 5 (𝑈𝑆 → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) = (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))))
4847, 14sseq12d 3977 . . . 4 (𝑈𝑆 → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
4948adantl 481 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
5045, 49mpbid 232 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)))
51 cphlmod 25107 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
523lsssubg 20895 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
5351, 52sylan 580 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
54 eqid 2729 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
55 eqid 2729 . . . . 5 (norm‘𝑋) = (norm‘𝑋)
562, 54, 55subgnm 24554 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
5753, 56syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
58 eqid 2729 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
59 eqid 2729 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
6058, 59, 54cphnmfval 25125 . . . . . . 7 (𝑊 ∈ ℂPreHil → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
6160adantr 480 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
622, 59ressip 17284 . . . . . . . . . 10 (𝑈𝑆 → (·𝑖𝑊) = (·𝑖𝑋))
6362adantl 481 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (·𝑖𝑊) = (·𝑖𝑋))
6463oveqd 7386 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏(·𝑖𝑊)𝑏) = (𝑏(·𝑖𝑋)𝑏))
6564fveq2d 6844 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√‘(𝑏(·𝑖𝑊)𝑏)) = (√‘(𝑏(·𝑖𝑋)𝑏)))
6665mpteq2dv 5196 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6761, 66eqtrd 2764 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6858, 3lssss 20874 . . . . . . 7 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
6968adantl 481 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
70 dfss 3930 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) ↔ 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7169, 70sylib 218 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7267, 71reseq12d 5940 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))))
732, 58ressbas 17182 . . . . . 6 (𝑈𝑆 → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7473adantl 481 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7574reseq2d 5939 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
7672, 75eqtrd 2764 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
772, 58ressbasss 17185 . . . . 5 (Base‘𝑋) ⊆ (Base‘𝑊)
7877a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊))
7978resmptd 6000 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
8057, 76, 793eqtrd 2768 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
81 eqid 2729 . . 3 (Base‘𝑋) = (Base‘𝑋)
82 eqid 2729 . . 3 (·𝑖𝑋) = (·𝑖𝑋)
83 eqid 2729 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2729 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
8581, 82, 55, 83, 84iscph 25103 . 2 (𝑋 ∈ ℂPreHil ↔ ((𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))) ∧ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)) ∧ (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏)))))
8619, 50, 80, 85syl3anbrc 1344 1 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3029  wrex 3053  cin 3910  wss 3911   class class class wbr 5102  cmpt 5183  cres 5633  cima 5634  Fun wfun 6493  cfv 6499  crio 7325  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  ici 11046   · cmul 11049  +∞cpnf 11181  cle 11185  2c2 12217  +crp 12927  [,)cico 13284  cexp 14002  cre 15039  csqrt 15175  Basecbs 17155  s cress 17176  Scalarcsca 17199  ·𝑖cip 17201  SubGrpcsubg 19034  LModclmod 20798  LSubSpclss 20869  fldccnfld 21296  PreHilcphl 21566  normcnm 24497  NrmModcnlm 24501  ℂPreHilccph 25099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lmhm 20961  df-lvec 21042  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-phl 21568  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-nlm 24507  df-cph 25101
This theorem is referenced by:  cphssphl  25304  cmslsschl  25310  chlcsschl  25311
  Copyright terms: Public domain W3C validator