MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsscph Structured version   Visualization version   GIF version

Theorem cphsscph 23855
Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
cphsscph.x 𝑋 = (𝑊s 𝑈)
cphsscph.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cphsscph ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)

Proof of Theorem cphsscph
Dummy variables 𝑏 𝑞 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 23776 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 cphsscph.x . . . . 5 𝑋 = (𝑊s 𝑈)
3 cphsscph.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3phlssphl 20348 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
51, 4sylan 583 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
6 cphnlm 23777 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
72, 3lssnlm 23307 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
86, 7sylan 583 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
9 eqid 2798 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
10 eqid 2798 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
119, 10cphsca 23784 . . . . 5 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
1211adantr 484 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
132, 9resssca 16642 . . . . . 6 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413fveq2d 6649 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
1514oveq2d 7151 . . . . . 6 (𝑈𝑆 → (ℂflds (Base‘(Scalar‘𝑊))) = (ℂflds (Base‘(Scalar‘𝑋))))
1613, 15eqeq12d 2814 . . . . 5 (𝑈𝑆 → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1716adantl 485 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1812, 17mpbid 235 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋))))
195, 8, 183jca 1125 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
20 simpl 486 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑊 ∈ ℂPreHil)
21 elinel1 4122 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
2221adantr 484 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
23 elinel2 4123 . . . . . . . . . . . 12 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (0[,)+∞))
24 elrege0 12832 . . . . . . . . . . . . 13 (𝑞 ∈ (0[,)+∞) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
2524simplbi 501 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 𝑞 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ ℝ)
2726adantr 484 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ ℝ)
2824simprbi 500 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 0 ≤ 𝑞)
2923, 28syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 0 ≤ 𝑞)
3029adantr 484 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 0 ≤ 𝑞)
3122, 27, 303jca 1125 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
329, 10cphsqrtcl 23789 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
3320, 31, 32syl2anr 599 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
34 eleq1 2877 . . . . . . . . . 10 ((√‘𝑞) = 𝑥 → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3534adantl 485 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3635adantr 484 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3733, 36mpbid 235 . . . . . . 7 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
3837ex 416 . . . . . 6 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3938rexlimiva 3240 . . . . 5 (∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥 → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
40 df-sqrt 14586 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (𝑐 ∈ ℂ ((𝑐↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑐) ∧ (i · 𝑐) ∉ ℝ+)))
4140funmpt2 6363 . . . . . 6 Fun √
42 fvelima 6706 . . . . . 6 ((Fun √ ∧ 𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4341, 42mpan 689 . . . . 5 (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4439, 43syl11 33 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
4544ssrdv 3921 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)))
4614ineq1d 4138 . . . . . 6 (𝑈𝑆 → ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) = ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞)))
4746imaeq2d 5896 . . . . 5 (𝑈𝑆 → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) = (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))))
4847, 14sseq12d 3948 . . . 4 (𝑈𝑆 → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
4948adantl 485 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
5045, 49mpbid 235 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)))
51 cphlmod 23779 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
523lsssubg 19722 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
5351, 52sylan 583 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
54 eqid 2798 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
55 eqid 2798 . . . . 5 (norm‘𝑋) = (norm‘𝑋)
562, 54, 55subgnm 23239 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
5753, 56syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
58 eqid 2798 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
59 eqid 2798 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
6058, 59, 54cphnmfval 23797 . . . . . . 7 (𝑊 ∈ ℂPreHil → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
6160adantr 484 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
622, 59ressip 16644 . . . . . . . . . 10 (𝑈𝑆 → (·𝑖𝑊) = (·𝑖𝑋))
6362adantl 485 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (·𝑖𝑊) = (·𝑖𝑋))
6463oveqd 7152 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏(·𝑖𝑊)𝑏) = (𝑏(·𝑖𝑋)𝑏))
6564fveq2d 6649 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√‘(𝑏(·𝑖𝑊)𝑏)) = (√‘(𝑏(·𝑖𝑋)𝑏)))
6665mpteq2dv 5126 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6761, 66eqtrd 2833 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6858, 3lssss 19701 . . . . . . 7 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
6968adantl 485 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
70 dfss 3899 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) ↔ 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7169, 70sylib 221 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7267, 71reseq12d 5819 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))))
732, 58ressbas 16546 . . . . . 6 (𝑈𝑆 → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7473adantl 485 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7574reseq2d 5818 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
7672, 75eqtrd 2833 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
772, 58ressbasss 16548 . . . . 5 (Base‘𝑋) ⊆ (Base‘𝑊)
7877a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊))
7978resmptd 5875 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
8057, 76, 793eqtrd 2837 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
81 eqid 2798 . . 3 (Base‘𝑋) = (Base‘𝑋)
82 eqid 2798 . . 3 (·𝑖𝑋) = (·𝑖𝑋)
83 eqid 2798 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2798 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
8581, 82, 55, 83, 84iscph 23775 . 2 (𝑋 ∈ ℂPreHil ↔ ((𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))) ∧ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)) ∧ (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏)))))
8619, 50, 80, 85syl3anbrc 1340 1 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wnel 3091  wrex 3107  cin 3880  wss 3881   class class class wbr 5030  cmpt 5110  cres 5521  cima 5522  Fun wfun 6318  cfv 6324  crio 7092  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  ici 10528   · cmul 10531  +∞cpnf 10661  cle 10665  2c2 11680  +crp 12377  [,)cico 12728  cexp 13425  cre 14448  csqrt 14584  Basecbs 16475  s cress 16476  Scalarcsca 16560  ·𝑖cip 16562  SubGrpcsubg 18265  LModclmod 19627  LSubSpclss 19696  fldccnfld 20091  PreHilcphl 20313  normcnm 23183  NrmModcnlm 23187  ℂPreHilccph 23771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ds 16579  df-rest 16688  df-topn 16689  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-phl 20315  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nlm 23193  df-cph 23773
This theorem is referenced by:  cphssphl  23975  cmslsschl  23981  chlcsschl  23982
  Copyright terms: Public domain W3C validator