MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsscph Structured version   Visualization version   GIF version

Theorem cphsscph 25151
Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
cphsscph.x 𝑋 = (𝑊s 𝑈)
cphsscph.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cphsscph ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)

Proof of Theorem cphsscph
Dummy variables 𝑏 𝑞 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 25071 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 cphsscph.x . . . . 5 𝑋 = (𝑊s 𝑈)
3 cphsscph.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3phlssphl 21568 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
51, 4sylan 580 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
6 cphnlm 25072 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
72, 3lssnlm 24589 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
86, 7sylan 580 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
9 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
10 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
119, 10cphsca 25079 . . . . 5 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
1211adantr 480 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
132, 9resssca 17306 . . . . . 6 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413fveq2d 6862 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
1514oveq2d 7403 . . . . . 6 (𝑈𝑆 → (ℂflds (Base‘(Scalar‘𝑊))) = (ℂflds (Base‘(Scalar‘𝑋))))
1613, 15eqeq12d 2745 . . . . 5 (𝑈𝑆 → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1716adantl 481 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1812, 17mpbid 232 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋))))
195, 8, 183jca 1128 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
20 simpl 482 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑊 ∈ ℂPreHil)
21 elinel1 4164 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
2221adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
23 elinel2 4165 . . . . . . . . . . . 12 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (0[,)+∞))
24 elrege0 13415 . . . . . . . . . . . . 13 (𝑞 ∈ (0[,)+∞) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
2524simplbi 497 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 𝑞 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ ℝ)
2726adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ ℝ)
2824simprbi 496 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 0 ≤ 𝑞)
2923, 28syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 0 ≤ 𝑞)
3029adantr 480 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 0 ≤ 𝑞)
3122, 27, 303jca 1128 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
329, 10cphsqrtcl 25084 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
3320, 31, 32syl2anr 597 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
34 eleq1 2816 . . . . . . . . . 10 ((√‘𝑞) = 𝑥 → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3534adantl 481 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3635adantr 480 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3733, 36mpbid 232 . . . . . . 7 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
3837ex 412 . . . . . 6 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3938rexlimiva 3126 . . . . 5 (∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥 → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
40 df-sqrt 15201 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (𝑐 ∈ ℂ ((𝑐↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑐) ∧ (i · 𝑐) ∉ ℝ+)))
4140funmpt2 6555 . . . . . 6 Fun √
42 fvelima 6926 . . . . . 6 ((Fun √ ∧ 𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4341, 42mpan 690 . . . . 5 (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4439, 43syl11 33 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
4544ssrdv 3952 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)))
4614ineq1d 4182 . . . . . 6 (𝑈𝑆 → ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) = ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞)))
4746imaeq2d 6031 . . . . 5 (𝑈𝑆 → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) = (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))))
4847, 14sseq12d 3980 . . . 4 (𝑈𝑆 → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
4948adantl 481 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
5045, 49mpbid 232 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)))
51 cphlmod 25074 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
523lsssubg 20863 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
5351, 52sylan 580 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
54 eqid 2729 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
55 eqid 2729 . . . . 5 (norm‘𝑋) = (norm‘𝑋)
562, 54, 55subgnm 24521 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
5753, 56syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
58 eqid 2729 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
59 eqid 2729 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
6058, 59, 54cphnmfval 25092 . . . . . . 7 (𝑊 ∈ ℂPreHil → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
6160adantr 480 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
622, 59ressip 17308 . . . . . . . . . 10 (𝑈𝑆 → (·𝑖𝑊) = (·𝑖𝑋))
6362adantl 481 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (·𝑖𝑊) = (·𝑖𝑋))
6463oveqd 7404 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏(·𝑖𝑊)𝑏) = (𝑏(·𝑖𝑋)𝑏))
6564fveq2d 6862 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√‘(𝑏(·𝑖𝑊)𝑏)) = (√‘(𝑏(·𝑖𝑋)𝑏)))
6665mpteq2dv 5201 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6761, 66eqtrd 2764 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6858, 3lssss 20842 . . . . . . 7 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
6968adantl 481 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
70 dfss 3933 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) ↔ 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7169, 70sylib 218 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7267, 71reseq12d 5951 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))))
732, 58ressbas 17206 . . . . . 6 (𝑈𝑆 → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7473adantl 481 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7574reseq2d 5950 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
7672, 75eqtrd 2764 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
772, 58ressbasss 17209 . . . . 5 (Base‘𝑋) ⊆ (Base‘𝑊)
7877a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊))
7978resmptd 6011 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
8057, 76, 793eqtrd 2768 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
81 eqid 2729 . . 3 (Base‘𝑋) = (Base‘𝑋)
82 eqid 2729 . . 3 (·𝑖𝑋) = (·𝑖𝑋)
83 eqid 2729 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2729 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
8581, 82, 55, 83, 84iscph 25070 . 2 (𝑋 ∈ ℂPreHil ↔ ((𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))) ∧ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)) ∧ (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏)))))
8619, 50, 80, 85syl3anbrc 1344 1 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3029  wrex 3053  cin 3913  wss 3914   class class class wbr 5107  cmpt 5188  cres 5640  cima 5641  Fun wfun 6505  cfv 6511  crio 7343  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  ici 11070   · cmul 11073  +∞cpnf 11205  cle 11209  2c2 12241  +crp 12951  [,)cico 13308  cexp 14026  cre 15063  csqrt 15199  Basecbs 17179  s cress 17200  Scalarcsca 17223  ·𝑖cip 17225  SubGrpcsubg 19052  LModclmod 20766  LSubSpclss 20837  fldccnfld 21264  PreHilcphl 21533  normcnm 24464  NrmModcnlm 24468  ℂPreHilccph 25066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ds 17242  df-rest 17385  df-topn 17386  df-0g 17404  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-phl 21535  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-nm 24470  df-ngp 24471  df-nlm 24474  df-cph 25068
This theorem is referenced by:  cphssphl  25271  cmslsschl  25277  chlcsschl  25278
  Copyright terms: Public domain W3C validator