MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsscph Structured version   Visualization version   GIF version

Theorem cphsscph 24415
Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
cphsscph.x 𝑋 = (𝑊s 𝑈)
cphsscph.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cphsscph ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)

Proof of Theorem cphsscph
Dummy variables 𝑏 𝑞 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphphl 24335 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
2 cphsscph.x . . . . 5 𝑋 = (𝑊s 𝑈)
3 cphsscph.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3phlssphl 20864 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
51, 4sylan 580 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
6 cphnlm 24336 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
72, 3lssnlm 23865 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
86, 7sylan 580 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
9 eqid 2738 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
10 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
119, 10cphsca 24343 . . . . 5 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
1211adantr 481 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
132, 9resssca 17053 . . . . . 6 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413fveq2d 6778 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
1514oveq2d 7291 . . . . . 6 (𝑈𝑆 → (ℂflds (Base‘(Scalar‘𝑊))) = (ℂflds (Base‘(Scalar‘𝑋))))
1613, 15eqeq12d 2754 . . . . 5 (𝑈𝑆 → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1716adantl 482 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ↔ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
1812, 17mpbid 231 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋))))
195, 8, 183jca 1127 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))))
20 simpl 483 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑊 ∈ ℂPreHil)
21 elinel1 4129 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
2221adantr 481 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
23 elinel2 4130 . . . . . . . . . . . 12 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ (0[,)+∞))
24 elrege0 13186 . . . . . . . . . . . . 13 (𝑞 ∈ (0[,)+∞) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
2524simplbi 498 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 𝑞 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 𝑞 ∈ ℝ)
2726adantr 481 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 𝑞 ∈ ℝ)
2824simprbi 497 . . . . . . . . . . . 12 (𝑞 ∈ (0[,)+∞) → 0 ≤ 𝑞)
2923, 28syl 17 . . . . . . . . . . 11 (𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) → 0 ≤ 𝑞)
3029adantr 481 . . . . . . . . . 10 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → 0 ≤ 𝑞)
3122, 27, 303jca 1127 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞))
329, 10cphsqrtcl 24348 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
3320, 31, 32syl2anr 597 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → (√‘𝑞) ∈ (Base‘(Scalar‘𝑊)))
34 eleq1 2826 . . . . . . . . . 10 ((√‘𝑞) = 𝑥 → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3534adantl 482 . . . . . . . . 9 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3635adantr 481 . . . . . . . 8 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → ((√‘𝑞) ∈ (Base‘(Scalar‘𝑊)) ↔ 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3733, 36mpbid 231 . . . . . . 7 (((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) ∧ (𝑊 ∈ ℂPreHil ∧ 𝑈𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
3837ex 413 . . . . . 6 ((𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) ∧ (√‘𝑞) = 𝑥) → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
3938rexlimiva 3210 . . . . 5 (∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥 → ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
40 df-sqrt 14946 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (𝑐 ∈ ℂ ((𝑐↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑐) ∧ (i · 𝑐) ∉ ℝ+)))
4140funmpt2 6473 . . . . . 6 Fun √
42 fvelima 6835 . . . . . 6 ((Fun √ ∧ 𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4341, 42mpan 687 . . . . 5 (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → ∃𝑞 ∈ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))(√‘𝑞) = 𝑥)
4439, 43syl11 33 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑥 ∈ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
4544ssrdv 3927 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)))
4614ineq1d 4145 . . . . . 6 (𝑈𝑆 → ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞)) = ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞)))
4746imaeq2d 5969 . . . . 5 (𝑈𝑆 → (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) = (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))))
4847, 14sseq12d 3954 . . . 4 (𝑈𝑆 → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
4948adantl 482 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ↔ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋))))
5045, 49mpbid 231 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)))
51 cphlmod 24338 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
523lsssubg 20219 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
5351, 52sylan 580 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
54 eqid 2738 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
55 eqid 2738 . . . . 5 (norm‘𝑋) = (norm‘𝑋)
562, 54, 55subgnm 23789 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
5753, 56syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = ((norm‘𝑊) ↾ 𝑈))
58 eqid 2738 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
59 eqid 2738 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
6058, 59, 54cphnmfval 24356 . . . . . . 7 (𝑊 ∈ ℂPreHil → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
6160adantr 481 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))))
622, 59ressip 17055 . . . . . . . . . 10 (𝑈𝑆 → (·𝑖𝑊) = (·𝑖𝑋))
6362adantl 482 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (·𝑖𝑊) = (·𝑖𝑋))
6463oveqd 7292 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏(·𝑖𝑊)𝑏) = (𝑏(·𝑖𝑋)𝑏))
6564fveq2d 6778 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (√‘(𝑏(·𝑖𝑊)𝑏)) = (√‘(𝑏(·𝑖𝑋)𝑏)))
6665mpteq2dv 5176 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑊)𝑏))) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6761, 66eqtrd 2778 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑊) = (𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
6858, 3lssss 20198 . . . . . . 7 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
6968adantl 482 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
70 dfss 3905 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) ↔ 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7169, 70sylib 217 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑈 = (𝑈 ∩ (Base‘𝑊)))
7267, 71reseq12d 5892 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))))
732, 58ressbas 16947 . . . . . 6 (𝑈𝑆 → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7473adantl 482 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (𝑈 ∩ (Base‘𝑊)) = (Base‘𝑋))
7574reseq2d 5891 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (𝑈 ∩ (Base‘𝑊))) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
7672, 75eqtrd 2778 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((norm‘𝑊) ↾ 𝑈) = ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)))
772, 58ressbasss 16950 . . . . 5 (Base‘𝑋) ⊆ (Base‘𝑊)
7877a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (Base‘𝑋) ⊆ (Base‘𝑊))
7978resmptd 5948 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → ((𝑏 ∈ (Base‘𝑊) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))) ↾ (Base‘𝑋)) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
8057, 76, 793eqtrd 2782 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏))))
81 eqid 2738 . . 3 (Base‘𝑋) = (Base‘𝑋)
82 eqid 2738 . . 3 (·𝑖𝑋) = (·𝑖𝑋)
83 eqid 2738 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2738 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
8581, 82, 55, 83, 84iscph 24334 . 2 (𝑋 ∈ ℂPreHil ↔ ((𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ (Scalar‘𝑋) = (ℂflds (Base‘(Scalar‘𝑋)))) ∧ (√ “ ((Base‘(Scalar‘𝑋)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑋)) ∧ (norm‘𝑋) = (𝑏 ∈ (Base‘𝑋) ↦ (√‘(𝑏(·𝑖𝑋)𝑏)))))
8619, 50, 80, 85syl3anbrc 1342 1 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wnel 3049  wrex 3065  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  cres 5591  cima 5592  Fun wfun 6427  cfv 6433  crio 7231  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  ici 10873   · cmul 10876  +∞cpnf 11006  cle 11010  2c2 12028  +crp 12730  [,)cico 13081  cexp 13782  cre 14808  csqrt 14944  Basecbs 16912  s cress 16941  Scalarcsca 16965  ·𝑖cip 16967  SubGrpcsubg 18749  LModclmod 20123  LSubSpclss 20193  fldccnfld 20597  PreHilcphl 20829  normcnm 23732  NrmModcnlm 23736  ℂPreHilccph 24330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ds 16984  df-rest 17133  df-topn 17134  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lmhm 20284  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-phl 20831  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nlm 23742  df-cph 24332
This theorem is referenced by:  cphssphl  24535  cmslsschl  24541  chlcsschl  24542
  Copyright terms: Public domain W3C validator