Step | Hyp | Ref
| Expression |
1 | | cphphl 24679 |
. . . 4
β’ (π β βPreHil β
π β
PreHil) |
2 | | cphsscph.x |
. . . . 5
β’ π = (π βΎs π) |
3 | | cphsscph.s |
. . . . 5
β’ π = (LSubSpβπ) |
4 | 2, 3 | phlssphl 21203 |
. . . 4
β’ ((π β PreHil β§ π β π) β π β PreHil) |
5 | 1, 4 | sylan 580 |
. . 3
β’ ((π β βPreHil β§
π β π) β π β PreHil) |
6 | | cphnlm 24680 |
. . . 4
β’ (π β βPreHil β
π β
NrmMod) |
7 | 2, 3 | lssnlm 24209 |
. . . 4
β’ ((π β NrmMod β§ π β π) β π β NrmMod) |
8 | 6, 7 | sylan 580 |
. . 3
β’ ((π β βPreHil β§
π β π) β π β NrmMod) |
9 | | eqid 2732 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
10 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
11 | 9, 10 | cphsca 24687 |
. . . . 5
β’ (π β βPreHil β
(Scalarβπ) =
(βfld βΎs (Baseβ(Scalarβπ)))) |
12 | 11 | adantr 481 |
. . . 4
β’ ((π β βPreHil β§
π β π) β (Scalarβπ) = (βfld
βΎs (Baseβ(Scalarβπ)))) |
13 | 2, 9 | resssca 17284 |
. . . . . 6
β’ (π β π β (Scalarβπ) = (Scalarβπ)) |
14 | 13 | fveq2d 6892 |
. . . . . . 7
β’ (π β π β (Baseβ(Scalarβπ)) =
(Baseβ(Scalarβπ))) |
15 | 14 | oveq2d 7421 |
. . . . . 6
β’ (π β π β (βfld
βΎs (Baseβ(Scalarβπ))) = (βfld
βΎs (Baseβ(Scalarβπ)))) |
16 | 13, 15 | eqeq12d 2748 |
. . . . 5
β’ (π β π β ((Scalarβπ) = (βfld
βΎs (Baseβ(Scalarβπ))) β (Scalarβπ) = (βfld
βΎs (Baseβ(Scalarβπ))))) |
17 | 16 | adantl 482 |
. . . 4
β’ ((π β βPreHil β§
π β π) β ((Scalarβπ) = (βfld
βΎs (Baseβ(Scalarβπ))) β (Scalarβπ) = (βfld
βΎs (Baseβ(Scalarβπ))))) |
18 | 12, 17 | mpbid 231 |
. . 3
β’ ((π β βPreHil β§
π β π) β (Scalarβπ) = (βfld
βΎs (Baseβ(Scalarβπ)))) |
19 | 5, 8, 18 | 3jca 1128 |
. 2
β’ ((π β βPreHil β§
π β π) β (π β PreHil β§ π β NrmMod β§ (Scalarβπ) = (βfld
βΎs (Baseβ(Scalarβπ))))) |
20 | | simpl 483 |
. . . . . . . . 9
β’ ((π β βPreHil β§
π β π) β π β βPreHil) |
21 | | elinel1 4194 |
. . . . . . . . . . 11
β’ (π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β π β
(Baseβ(Scalarβπ))) |
22 | 21 | adantr 481 |
. . . . . . . . . 10
β’ ((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β π β (Baseβ(Scalarβπ))) |
23 | | elinel2 4195 |
. . . . . . . . . . . 12
β’ (π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β π β
(0[,)+β)) |
24 | | elrege0 13427 |
. . . . . . . . . . . . 13
β’ (π β (0[,)+β) β
(π β β β§ 0
β€ π)) |
25 | 24 | simplbi 498 |
. . . . . . . . . . . 12
β’ (π β (0[,)+β) β
π β
β) |
26 | 23, 25 | syl 17 |
. . . . . . . . . . 11
β’ (π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β π β
β) |
27 | 26 | adantr 481 |
. . . . . . . . . 10
β’ ((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β π β β) |
28 | 24 | simprbi 497 |
. . . . . . . . . . . 12
β’ (π β (0[,)+β) β 0
β€ π) |
29 | 23, 28 | syl 17 |
. . . . . . . . . . 11
β’ (π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β 0 β€ π) |
30 | 29 | adantr 481 |
. . . . . . . . . 10
β’ ((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β 0 β€ π) |
31 | 22, 27, 30 | 3jca 1128 |
. . . . . . . . 9
β’ ((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β (π β (Baseβ(Scalarβπ)) β§ π β β β§ 0 β€ π)) |
32 | 9, 10 | cphsqrtcl 24692 |
. . . . . . . . 9
β’ ((π β βPreHil β§
(π β
(Baseβ(Scalarβπ)) β§ π β β β§ 0 β€ π)) β (ββπ) β
(Baseβ(Scalarβπ))) |
33 | 20, 31, 32 | syl2anr 597 |
. . . . . . . 8
β’ (((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β§ (π β βPreHil β§ π β π)) β (ββπ) β (Baseβ(Scalarβπ))) |
34 | | eleq1 2821 |
. . . . . . . . . 10
β’
((ββπ) =
π₯ β
((ββπ) β
(Baseβ(Scalarβπ)) β π₯ β (Baseβ(Scalarβπ)))) |
35 | 34 | adantl 482 |
. . . . . . . . 9
β’ ((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β ((ββπ) β
(Baseβ(Scalarβπ)) β π₯ β (Baseβ(Scalarβπ)))) |
36 | 35 | adantr 481 |
. . . . . . . 8
β’ (((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β§ (π β βPreHil β§ π β π)) β ((ββπ) β (Baseβ(Scalarβπ)) β π₯ β (Baseβ(Scalarβπ)))) |
37 | 33, 36 | mpbid 231 |
. . . . . . 7
β’ (((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β§ (π β βPreHil β§ π β π)) β π₯ β (Baseβ(Scalarβπ))) |
38 | 37 | ex 413 |
. . . . . 6
β’ ((π β
((Baseβ(Scalarβπ)) β© (0[,)+β)) β§
(ββπ) = π₯) β ((π β βPreHil β§ π β π) β π₯ β (Baseβ(Scalarβπ)))) |
39 | 38 | rexlimiva 3147 |
. . . . 5
β’
(βπ β
((Baseβ(Scalarβπ)) β© (0[,)+β))(ββπ) = π₯ β ((π β βPreHil β§ π β π) β π₯ β (Baseβ(Scalarβπ)))) |
40 | | df-sqrt 15178 |
. . . . . . 7
β’ β =
(π₯ β β β¦
(β©π β
β ((πβ2) = π₯ β§ 0 β€
(ββπ) β§ (i
Β· π) β
β+))) |
41 | 40 | funmpt2 6584 |
. . . . . 6
β’ Fun
β |
42 | | fvelima 6954 |
. . . . . 6
β’ ((Fun
β β§ π₯ β
(β β ((Baseβ(Scalarβπ)) β© (0[,)+β)))) β
βπ β
((Baseβ(Scalarβπ)) β© (0[,)+β))(ββπ) = π₯) |
43 | 41, 42 | mpan 688 |
. . . . 5
β’ (π₯ β (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
βπ β
((Baseβ(Scalarβπ)) β© (0[,)+β))(ββπ) = π₯) |
44 | 39, 43 | syl11 33 |
. . . 4
β’ ((π β βPreHil β§
π β π) β (π₯ β (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β π₯ β
(Baseβ(Scalarβπ)))) |
45 | 44 | ssrdv 3987 |
. . 3
β’ ((π β βPreHil β§
π β π) β (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
(Baseβ(Scalarβπ))) |
46 | 14 | ineq1d 4210 |
. . . . . 6
β’ (π β π β ((Baseβ(Scalarβπ)) β© (0[,)+β)) =
((Baseβ(Scalarβπ)) β© (0[,)+β))) |
47 | 46 | imaeq2d 6057 |
. . . . 5
β’ (π β π β (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) = (β β
((Baseβ(Scalarβπ)) β© (0[,)+β)))) |
48 | 47, 14 | sseq12d 4014 |
. . . 4
β’ (π β π β ((β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
(Baseβ(Scalarβπ)) β (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
(Baseβ(Scalarβπ)))) |
49 | 48 | adantl 482 |
. . 3
β’ ((π β βPreHil β§
π β π) β ((β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
(Baseβ(Scalarβπ)) β (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
(Baseβ(Scalarβπ)))) |
50 | 45, 49 | mpbid 231 |
. 2
β’ ((π β βPreHil β§
π β π) β (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
(Baseβ(Scalarβπ))) |
51 | | cphlmod 24682 |
. . . . 5
β’ (π β βPreHil β
π β
LMod) |
52 | 3 | lsssubg 20560 |
. . . . 5
β’ ((π β LMod β§ π β π) β π β (SubGrpβπ)) |
53 | 51, 52 | sylan 580 |
. . . 4
β’ ((π β βPreHil β§
π β π) β π β (SubGrpβπ)) |
54 | | eqid 2732 |
. . . . 5
β’
(normβπ) =
(normβπ) |
55 | | eqid 2732 |
. . . . 5
β’
(normβπ) =
(normβπ) |
56 | 2, 54, 55 | subgnm 24133 |
. . . 4
β’ (π β (SubGrpβπ) β (normβπ) = ((normβπ) βΎ π)) |
57 | 53, 56 | syl 17 |
. . 3
β’ ((π β βPreHil β§
π β π) β (normβπ) = ((normβπ) βΎ π)) |
58 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
59 | | eqid 2732 |
. . . . . . . 8
β’
(Β·πβπ) =
(Β·πβπ) |
60 | 58, 59, 54 | cphnmfval 24700 |
. . . . . . 7
β’ (π β βPreHil β
(normβπ) = (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π)))) |
61 | 60 | adantr 481 |
. . . . . 6
β’ ((π β βPreHil β§
π β π) β (normβπ) = (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π)))) |
62 | 2, 59 | ressip 17286 |
. . . . . . . . . 10
β’ (π β π β
(Β·πβπ) =
(Β·πβπ)) |
63 | 62 | adantl 482 |
. . . . . . . . 9
β’ ((π β βPreHil β§
π β π) β
(Β·πβπ) =
(Β·πβπ)) |
64 | 63 | oveqd 7422 |
. . . . . . . 8
β’ ((π β βPreHil β§
π β π) β (π(Β·πβπ)π) = (π(Β·πβπ)π)) |
65 | 64 | fveq2d 6892 |
. . . . . . 7
β’ ((π β βPreHil β§
π β π) β (ββ(π(Β·πβπ)π)) = (ββ(π(Β·πβπ)π))) |
66 | 65 | mpteq2dv 5249 |
. . . . . 6
β’ ((π β βPreHil β§
π β π) β (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π))) = (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π)))) |
67 | 61, 66 | eqtrd 2772 |
. . . . 5
β’ ((π β βPreHil β§
π β π) β (normβπ) = (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π)))) |
68 | 58, 3 | lssss 20539 |
. . . . . . 7
β’ (π β π β π β (Baseβπ)) |
69 | 68 | adantl 482 |
. . . . . 6
β’ ((π β βPreHil β§
π β π) β π β (Baseβπ)) |
70 | | dfss 3965 |
. . . . . 6
β’ (π β (Baseβπ) β π = (π β© (Baseβπ))) |
71 | 69, 70 | sylib 217 |
. . . . 5
β’ ((π β βPreHil β§
π β π) β π = (π β© (Baseβπ))) |
72 | 67, 71 | reseq12d 5980 |
. . . 4
β’ ((π β βPreHil β§
π β π) β ((normβπ) βΎ π) = ((π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π))) βΎ (π β© (Baseβπ)))) |
73 | 2, 58 | ressbas 17175 |
. . . . . 6
β’ (π β π β (π β© (Baseβπ)) = (Baseβπ)) |
74 | 73 | adantl 482 |
. . . . 5
β’ ((π β βPreHil β§
π β π) β (π β© (Baseβπ)) = (Baseβπ)) |
75 | 74 | reseq2d 5979 |
. . . 4
β’ ((π β βPreHil β§
π β π) β ((π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π))) βΎ (π β© (Baseβπ))) = ((π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π))) βΎ (Baseβπ))) |
76 | 72, 75 | eqtrd 2772 |
. . 3
β’ ((π β βPreHil β§
π β π) β ((normβπ) βΎ π) = ((π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π))) βΎ (Baseβπ))) |
77 | 2, 58 | ressbasss 17179 |
. . . . 5
β’
(Baseβπ)
β (Baseβπ) |
78 | 77 | a1i 11 |
. . . 4
β’ ((π β βPreHil β§
π β π) β (Baseβπ) β (Baseβπ)) |
79 | 78 | resmptd 6038 |
. . 3
β’ ((π β βPreHil β§
π β π) β ((π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π))) βΎ (Baseβπ)) = (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π)))) |
80 | 57, 76, 79 | 3eqtrd 2776 |
. 2
β’ ((π β βPreHil β§
π β π) β (normβπ) = (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π)))) |
81 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
82 | | eqid 2732 |
. . 3
β’
(Β·πβπ) =
(Β·πβπ) |
83 | | eqid 2732 |
. . 3
β’
(Scalarβπ) =
(Scalarβπ) |
84 | | eqid 2732 |
. . 3
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
85 | 81, 82, 55, 83, 84 | iscph 24678 |
. 2
β’ (π β βPreHil β
((π β PreHil β§
π β NrmMod β§
(Scalarβπ) =
(βfld βΎs (Baseβ(Scalarβπ)))) β§ (β β
((Baseβ(Scalarβπ)) β© (0[,)+β))) β
(Baseβ(Scalarβπ)) β§ (normβπ) = (π β (Baseβπ) β¦ (ββ(π(Β·πβπ)π))))) |
86 | 19, 50, 80, 85 | syl3anbrc 1343 |
1
β’ ((π β βPreHil β§
π β π) β π β βPreHil) |