| Metamath
Proof Explorer Theorem List (p. 152 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cjrebd 15101 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (∗‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | cjne0d 15102 | A number is nonzero iff its complex conjugate is nonzero. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) ≠ 0) | ||
| Theorem | recjd 15103 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
| Theorem | imcjd 15104 | Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
| Theorem | cjmulrcld 15105 | A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
| Theorem | cjmulvald 15106 | A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | cjmulge0d 15107 | A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
| Theorem | renegd 15108 | Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
| Theorem | imnegd 15109 | Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
| Theorem | cjnegd 15110 | Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘-𝐴) = -(∗‘𝐴)) | ||
| Theorem | addcjd 15111 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
| Theorem | cjexpd 15112 | Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
| Theorem | readdd 15113 | Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
| Theorem | imaddd 15114 | Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
| Theorem | resubd 15115 | Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
| Theorem | imsubd 15116 | Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
| Theorem | remuld 15117 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | immuld 15118 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
| Theorem | cjaddd 15119 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
| Theorem | cjmuld 15120 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
| Theorem | ipcnd 15121 | Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | cjdivd 15122 | Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | rered 15123 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) | ||
| Theorem | reim0d 15124 | The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) = 0) | ||
| Theorem | cjred 15125 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = 𝐴) | ||
| Theorem | remul2d 15126 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
| Theorem | immul2d 15127 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
| Theorem | redivd 15128 | Real part of a division. Related to remul2 15029. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴)) | ||
| Theorem | imdivd 15129 | Imaginary part of a division. Related to remul2 15029. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) | ||
| Theorem | crred 15130 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
| Theorem | crimd 15131 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
| Syntax | csqrt 15132 | Extend class notation to include square root of a complex number. |
| class √ | ||
| Syntax | cabs 15133 | Extend class notation to include a function for the absolute value (modulus) of a complex number. |
| class abs | ||
| Definition | df-sqrt 15134* |
Define a function whose value is the square root of a complex number.
For example, (√‘25) = 5 (ex-sqrt 30424).
Since (𝑦↑2) = 𝑥 iff (-𝑦↑2) = 𝑥, we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root 30424. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrtcl 15261 for its closure, sqrtval 15136 for its value, sqrtth 15264 and sqsqrti 15275 for its relationship to squares, and sqrt11i 15284 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.) |
| ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) | ||
| Definition | df-abs 15135 | Define the function for the absolute value (modulus) of a complex number. See abscli 15295 for its closure and absval 15137 or absval2i 15297 for its value. For example, (abs‘-2) = 2 (ex-abs 30425). (Contributed by NM, 27-Jul-1999.) |
| ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | ||
| Theorem | sqrtval 15136* | Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | ||
| Theorem | absval 15137 | The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | ||
| Theorem | rennim 15138 | A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
| ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) | ||
| Theorem | cnpart 15139 | The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+))) | ||
| Theorem | sqrt0 15140 | The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ (√‘0) = 0 | ||
| Theorem | 01sqrexlem1 15141* | Lemma for 01sqrex 15148. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) | ||
| Theorem | 01sqrexlem2 15142* | Lemma for 01sqrex 15148. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) | ||
| Theorem | 01sqrexlem3 15143* | Lemma for 01sqrex 15148. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) | ||
| Theorem | 01sqrexlem4 15144* | Lemma for 01sqrex 15148. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) | ||
| Theorem | 01sqrexlem5 15145* | Lemma for 01sqrex 15148. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) | ||
| Theorem | 01sqrexlem6 15146* | Lemma for 01sqrex 15148. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴) | ||
| Theorem | 01sqrexlem7 15147* | Lemma for 01sqrex 15148. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} & ⊢ 𝐵 = sup(𝑆, ℝ, < ) & ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = 𝐴) | ||
| Theorem | 01sqrex 15148* | Existence of a square root for reals in the interval (0, 1]. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) | ||
| Theorem | resqrex 15149* | Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
| Theorem | sqrmo 15150* | Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.) |
| ⊢ (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
| Theorem | resqreu 15151* | Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
| Theorem | resqrtcl 15152 | Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | ||
| Theorem | resqrtthlem 15153 | Lemma for resqrtth 15154. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
| Theorem | resqrtth 15154 | Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | remsqsqrt 15155 | Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
| Theorem | sqrtge0 15156 | The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) | ||
| Theorem | sqrtgt0 15157 | The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴)) | ||
| Theorem | sqrtmul 15158 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
| Theorem | sqrtle 15159 | Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
| Theorem | sqrtlt 15160 | Square root is strictly monotonic. Closed form of sqrtlti 15289. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
| Theorem | sqrt11 15161 | The square root function is one-to-one. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sqrt00 15162 | A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | rpsqrtcl 15163 | The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.) |
| ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) | ||
| Theorem | sqrtdiv 15164 | Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) | ||
| Theorem | sqrtneglem 15165 | The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+)) | ||
| Theorem | sqrtneg 15166 | The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘-𝐴) = (i · (√‘𝐴))) | ||
| Theorem | sqrtsq2 15167 | Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) | ||
| Theorem | sqrtsq 15168 | Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) | ||
| Theorem | sqrtmsq 15169 | Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
| Theorem | sqrt1 15170 | The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.) |
| ⊢ (√‘1) = 1 | ||
| Theorem | sqrt4 15171 | The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.) |
| ⊢ (√‘4) = 2 | ||
| Theorem | sqrt9 15172 | The square root of 9 is 3. (Contributed by NM, 11-May-2004.) |
| ⊢ (√‘9) = 3 | ||
| Theorem | sqrt2gt1lt2 15173 | The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ (1 < (√‘2) ∧ (√‘2) < 2) | ||
| Theorem | sqrtm1 15174 | The imaginary unit is the square root of negative 1. A lot of people like to call this the "definition" of i, but the definition of √ df-sqrt 15134 has already been crafted with i being mentioned explicitly, and in any case it doesn't make too much sense to define a value based on a function evaluated outside its domain. A more appropriate view is to take ax-i2m1 11066 or i2 14101 as the "definition", and simply postulate the existence of a number satisfying this property. This is the approach we take here. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ i = (√‘-1) | ||
| Theorem | nn0sqeq1 15175 | A natural number with square one is equal to one. (Contributed by Thierry Arnoux, 2-Feb-2020.) (Proof shortened by Thierry Arnoux, 6-Jun-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁↑2) = 1) → 𝑁 = 1) | ||
| Theorem | absneg 15176 | Absolute value of the negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
| Theorem | abscl 15177 | Real closure of absolute value. (Contributed by NM, 3-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | ||
| Theorem | abscj 15178 | The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) | ||
| Theorem | absvalsq 15179 | Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | ||
| Theorem | absvalsq2 15180 | Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | sqabsadd 15181 | Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) | ||
| Theorem | sqabssub 15182 | Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) | ||
| Theorem | absval2 15183 | Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))) | ||
| Theorem | abs0 15184 | The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (abs‘0) = 0 | ||
| Theorem | absi 15185 | The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (abs‘i) = 1 | ||
| Theorem | absge0 15186 | Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | ||
| Theorem | absrpcl 15187 | The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+) | ||
| Theorem | abs00 15188 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00ad 15189 | A complex number is zero iff its absolute value is zero. Deduction form of abs00 15188. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00bd 15190 | If a complex number is zero, its absolute value is zero. Converse of abs00d 15348. One-way deduction form of abs00 15188. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 = 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 0) | ||
| Theorem | absreimsq 15191 | Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2))) | ||
| Theorem | absreim 15192 | Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2)))) | ||
| Theorem | absmul 15193 | Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) | ||
| Theorem | absdiv 15194 | Absolute value distributes over division. (Contributed by NM, 27-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | ||
| Theorem | absid 15195 | A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | ||
| Theorem | abs1 15196 | The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| ⊢ (abs‘1) = 1 | ||
| Theorem | absnid 15197 | For a negative number, its absolute value is its negation. (Contributed by NM, 27-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | ||
| Theorem | leabs 15198 | A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | ||
| Theorem | absor 15199 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | ||
| Theorem | absre 15200 | Absolute value of a real number. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |