![]() |
Metamath
Proof Explorer Theorem List (p. 152 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28326) |
![]() (28327-29851) |
![]() (29852-43461) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fprodn0f 15101* | A finite product of nonzero terms is nonzero. A version of fprodn0 15089 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) | ||
Theorem | fprodclf 15102* | Closure of a finite product of complex numbers. A version of fprodcl 15062 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | ||
Theorem | fprodge0 15103* | If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fprodeq0g 15104* | Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
Theorem | fprodge1 15105* | If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) | ||
Theorem | fprodle 15106* | If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶) | ||
Theorem | fprodmodd 15107* | If all factors of two finite products are equal modulo 𝑀, the products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) | ||
Theorem | iprodclim 15108* | An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = 𝐵) | ||
Theorem | iprodclim2 15109* | A converging product converges to its infinite product. (Contributed by Scott Fenton, 18-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ ∏𝑘 ∈ 𝑍 𝐴) | ||
Theorem | iprodclim3 15110* | The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) | ||
Theorem | iprodcl 15111* | The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 ∈ ℂ) | ||
Theorem | iprodrecl 15112* | The product of a non-trivially converging infinite real sequence is a real number. (Contributed by Scott Fenton, 18-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 ∈ ℝ) | ||
Theorem | iprodmul 15113* | Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∃𝑧(𝑧 ≠ 0 ∧ seq𝑚( · , 𝐺) ⇝ 𝑧)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 (𝐴 · 𝐵) = (∏𝑘 ∈ 𝑍 𝐴 · ∏𝑘 ∈ 𝑍 𝐵)) | ||
Syntax | cfallfac 15114 | Declare the syntax for the falling factorial. |
class FallFac | ||
Syntax | crisefac 15115 | Declare the syntax for the rising factorial. |
class RiseFac | ||
Definition | df-risefac 15116* | Define the rising factorial function. This is the function (𝐴 · (𝐴 + 1) · ...(𝐴 + 𝑁)) for complex 𝐴 and nonnegative integers 𝑁. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘)) | ||
Definition | df-fallfac 15117* | Define the falling factorial function. This is the function (𝐴 · (𝐴 − 1) · ...(𝐴 − 𝑁)) for complex 𝐴 and nonnegative integers 𝑁. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘)) | ||
Theorem | risefacval 15118* | The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) | ||
Theorem | fallfacval 15119* | The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − 𝑘)) | ||
Theorem | risefacval2 15120* | One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) | ||
Theorem | fallfacval2 15121* | One-based value of falling factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 − (𝑘 − 1))) | ||
Theorem | fallfacval3 15122* | A product representation of falling factorial when 𝐴 is a nonnegative integer. (Contributed by Scott Fenton, 20-Mar-2018.) |
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) | ||
Theorem | risefaccllem 15123* | Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ 𝑆 ⊆ ℂ & ⊢ 1 ∈ 𝑆 & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ 𝑆) | ||
Theorem | fallfaccllem 15124* | Lemma for falling factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ 𝑆 ⊆ ℂ & ⊢ 1 ∈ 𝑆 & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 − 𝑘) ∈ 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ 𝑆) | ||
Theorem | risefaccl 15125 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℂ) | ||
Theorem | fallfaccl 15126 | Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ ℂ) | ||
Theorem | rerisefaccl 15127 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ) | ||
Theorem | refallfaccl 15128 | Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ ℝ) | ||
Theorem | nnrisefaccl 15129 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℕ) | ||
Theorem | zrisefaccl 15130 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℤ) | ||
Theorem | zfallfaccl 15131 | Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac 𝑁) ∈ ℤ) | ||
Theorem | nn0risefaccl 15132 | Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℕ0) | ||
Theorem | rprisefaccl 15133 | Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ ℝ+) | ||
Theorem | risefallfac 15134 | A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018.) |
⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) | ||
Theorem | fallrisefac 15135 | A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.) |
⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) | ||
Theorem | risefall0lem 15136 | Lemma for risefac0 15137 and fallfac0 15138. Show a particular set of finite integers is empty. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ (0...(0 − 1)) = ∅ | ||
Theorem | risefac0 15137 | The value of the rising factorial when 𝑁 = 0. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ (𝐴 ∈ ℂ → (𝐴 RiseFac 0) = 1) | ||
Theorem | fallfac0 15138 | The value of the falling factorial when 𝑁 = 0. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ (𝐴 ∈ ℂ → (𝐴 FallFac 0) = 1) | ||
Theorem | risefacp1 15139 | The value of the rising factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) | ||
Theorem | fallfacp1 15140 | The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) | ||
Theorem | risefacp1d 15141 | The value of the rising factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) | ||
Theorem | fallfacp1d 15142 | The value of the falling factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) | ||
Theorem | risefac1 15143 | The value of rising factorial at one. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ (𝐴 ∈ ℂ → (𝐴 RiseFac 1) = 𝐴) | ||
Theorem | fallfac1 15144 | The value of falling factorial at one. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ (𝐴 ∈ ℂ → (𝐴 FallFac 1) = 𝐴) | ||
Theorem | risefacfac 15145 | Relate rising factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → (1 RiseFac 𝑁) = (!‘𝑁)) | ||
Theorem | fallfacfwd 15146 | The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1)))) | ||
Theorem | 0fallfac 15147 | The value of the zero falling factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = 0) | ||
Theorem | 0risefac 15148 | The value of the zero rising factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
⊢ (𝑁 ∈ ℕ → (0 RiseFac 𝑁) = 0) | ||
Theorem | binomfallfaclem1 15149 | Lemma for binomfallfac 15151. Closure law. (Contributed by Scott Fenton, 13-Mar-2018.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁C𝐾) · ((𝐴 FallFac (𝑁 − 𝐾)) · (𝐵 FallFac (𝐾 + 1)))) ∈ ℂ) | ||
Theorem | binomfallfaclem2 15150* | Lemma for binomfallfac 15151. Inductive step. (Contributed by Scott Fenton, 13-Mar-2018.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) | ||
Theorem | binomfallfac 15151* | A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) | ||
Theorem | binomrisefac 15152* | A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)))) | ||
Theorem | fallfacval4 15153 | Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.) |
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴 − 𝑁)))) | ||
Theorem | bcfallfac 15154 | Binomial coefficient in terms of falling factorials. (Contributed by Scott Fenton, 20-Mar-2018.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) | ||
Theorem | fallfacfac 15155 | Relate falling factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 FallFac 𝑁) = (!‘𝑁)) | ||
Syntax | cbp 15156 | Declare the constant for the Bernoulli polynomial operator. |
class BernPoly | ||
Definition | df-bpoly 15157* | Define the Bernoulli polynomials. Here we use well-founded recursion to define the Bernoulli polynomials. This agrees with most textbook definitions, although explicit formulas do exist. (Contributed by Scott Fenton, 22-May-2014.) |
⊢ BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ ⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚)) | ||
Theorem | bpolylem 15158* | Lemma for bpolyval 15159. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐺 = (𝑔 ∈ V ↦ ⦋(♯‘dom 𝑔) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) & ⊢ 𝐹 = wrecs( < , ℕ0, 𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) | ||
Theorem | bpolyval 15159* | The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) | ||
Theorem | bpoly0 15160 | The value of the Bernoulli polynomials at zero. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | ||
Theorem | bpoly1 15161 | The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) | ||
Theorem | bpolycl 15162 | Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ) | ||
Theorem | bpolysum 15163* | A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = (𝑋↑𝑁)) | ||
Theorem | bpolydiflem 15164* | Lemma for bpolydif 15165. (Contributed by Scott Fenton, 12-Jun-2014.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ⇒ ⊢ (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
Theorem | bpolydif 15165 | Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
Theorem | fsumkthpow 15166* | A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛↑𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1))) | ||
Theorem | bpoly2 15167 | The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) | ||
Theorem | bpoly3 15168 | The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) | ||
Theorem | bpoly4 15169 | The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / ;30))) | ||
Theorem | fsumcube 15170* | Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.) |
⊢ (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4)) | ||
Syntax | ce 15171 | Extend class notation to include the exponential function. |
class exp | ||
Syntax | ceu 15172 | Extend class notation to include Euler's constant e = 2.71828.... |
class e | ||
Syntax | csin 15173 | Extend class notation to include the sine function. |
class sin | ||
Syntax | ccos 15174 | Extend class notation to include the cosine function. |
class cos | ||
Syntax | ctan 15175 | Extend class notation to include the tangent function. |
class tan | ||
Syntax | cpi 15176 | Extend class notation to include the constant pi, π = 3.14159.... |
class π | ||
Definition | df-ef 15177* | Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 15189. (Contributed by NM, 14-Mar-2005.) |
⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | ||
Definition | df-e 15178 | Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
⊢ e = (exp‘1) | ||
Definition | df-sin 15179 | Define the sine function. (Contributed by NM, 14-Mar-2005.) |
⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | ||
Definition | df-cos 15180 | Define the cosine function. (Contributed by NM, 14-Mar-2005.) |
⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | ||
Definition | df-tan 15181 | Define the tangent function. We define it this way for cmpt 4954, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | ||
Definition | df-pi 15182 | Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) | ||
Theorem | eftcl 15183 | Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) | ||
Theorem | reeftcl 15184 | The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) | ||
Theorem | eftabs 15185 | The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) | ||
Theorem | eftval 15186* | The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) | ||
Theorem | efcllem 15187* | Lemma for efcl 15192. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 14995 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
Theorem | ef0lem 15188* | The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) | ||
Theorem | efval 15189* | Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | ||
Theorem | esum 15190 | Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.) |
⊢ e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘)) | ||
Theorem | eff 15191 | Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
⊢ exp:ℂ⟶ℂ | ||
Theorem | efcl 15192 | Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | ||
Theorem | efval2 15193* | Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | ||
Theorem | efcvg 15194* | The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) | ||
Theorem | efcvgfsum 15195* | Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) | ||
Theorem | reefcl 15196 | The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | ||
Theorem | reefcld 15197 | The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) | ||
Theorem | ere 15198 | Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
⊢ e ∈ ℝ | ||
Theorem | ege2le3 15199 | Lemma for egt2lt3 15315. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤ 3) | ||
Theorem | ef0 15200 | Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (exp‘0) = 1 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |