| Metamath
Proof Explorer Theorem List (p. 152 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | remullem 15101 | Lemma for remul 15102, immul 15109, and cjmul 15115. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))) | ||
| Theorem | remul 15102 | Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | remul2 15103 | Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
| Theorem | rediv 15104 | Real part of a division. Related to remul2 15103. (Contributed by David A. Wheeler, 10-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵)) | ||
| Theorem | imcj 15105 | Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
| Theorem | imneg 15106 | The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
| Theorem | imadd 15107 | Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
| Theorem | imsub 15108 | Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
| Theorem | immul 15109 | Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
| Theorem | immul2 15110 | Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
| Theorem | imdiv 15111 | Imaginary part of a division. Related to immul2 15110. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) | ||
| Theorem | cjre 15112 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | ||
| Theorem | cjcj 15113 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | ||
| Theorem | cjadd 15114 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
| Theorem | cjmul 15115 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
| Theorem | ipcnval 15116 | Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | cjmulrcl 15117 | A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
| Theorem | cjmulval 15118 | A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | cjmulge0 15119 | A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
| Theorem | cjneg 15120 | Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) | ||
| Theorem | addcj 15121 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
| Theorem | cjsub 15122 | Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | ||
| Theorem | cjexp 15123 | Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
| Theorem | imval2 15124 | The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) | ||
| Theorem | re0 15125 | The real part of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (ℜ‘0) = 0 | ||
| Theorem | im0 15126 | The imaginary part of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (ℑ‘0) = 0 | ||
| Theorem | re1 15127 | The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℜ‘1) = 1 | ||
| Theorem | im1 15128 | The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℑ‘1) = 0 | ||
| Theorem | rei 15129 | The real part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℜ‘i) = 0 | ||
| Theorem | imi 15130 | The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℑ‘i) = 1 | ||
| Theorem | cj0 15131 | The conjugate of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (∗‘0) = 0 | ||
| Theorem | cji 15132 | The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (∗‘i) = -i | ||
| Theorem | cjreim 15133 | The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) | ||
| Theorem | cjreim2 15134 | The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵))) | ||
| Theorem | cj11 15135 | Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) = (∗‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | cjne0 15136 | A number is nonzero iff its complex conjugate is nonzero. (Contributed by NM, 29-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0)) | ||
| Theorem | cjdiv 15137 | Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | cnrecnv 15138* | The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 12951. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | ||
| Theorem | sqeqd 15139 | A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐵)) & ⊢ ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | recli 15140 | The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘𝐴) ∈ ℝ | ||
| Theorem | imcli 15141 | The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘𝐴) ∈ ℝ | ||
| Theorem | cjcli 15142 | Closure law for complex conjugate. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘𝐴) ∈ ℂ | ||
| Theorem | replimi 15143 | Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) | ||
| Theorem | cjcji 15144 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘(∗‘𝐴)) = 𝐴 | ||
| Theorem | reim0bi 15145 | A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0) | ||
| Theorem | rerebi 15146 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴) | ||
| Theorem | cjrebi 15147 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴) | ||
| Theorem | recji 15148 | Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴) | ||
| Theorem | imcji 15149 | Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴) | ||
| Theorem | cjmulrcli 15150 | A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) ∈ ℝ | ||
| Theorem | cjmulvali 15151 | A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | ||
| Theorem | cjmulge0i 15152 | A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ 0 ≤ (𝐴 · (∗‘𝐴)) | ||
| Theorem | renegi 15153 | Real part of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘-𝐴) = -(ℜ‘𝐴) | ||
| Theorem | imnegi 15154 | Imaginary part of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘-𝐴) = -(ℑ‘𝐴) | ||
| Theorem | cjnegi 15155 | Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘-𝐴) = -(∗‘𝐴) | ||
| Theorem | addcji 15156 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)) | ||
| Theorem | readdi 15157 | Real part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)) | ||
| Theorem | imaddi 15158 | Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)) | ||
| Theorem | remuli 15159 | Real part of a product. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
| Theorem | immuli 15160 | Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) | ||
| Theorem | cjaddi 15161 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)) | ||
| Theorem | cjmuli 15162 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)) | ||
| Theorem | ipcni 15163 | Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
| Theorem | cjdivi 15164 | Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | crrei 15165 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴 | ||
| Theorem | crimi 15166 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵 | ||
| Theorem | recld 15167 | The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) | ||
| Theorem | imcld 15168 | The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) | ||
| Theorem | cjcld 15169 | Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) | ||
| Theorem | replimd 15170 | Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | ||
| Theorem | remimd 15171 | Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | ||
| Theorem | cjcjd 15172 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(∗‘𝐴)) = 𝐴) | ||
| Theorem | reim0bd 15173 | A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℑ‘𝐴) = 0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | rerebd 15174 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | cjrebd 15175 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (∗‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | cjne0d 15176 | A number is nonzero iff its complex conjugate is nonzero. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) ≠ 0) | ||
| Theorem | recjd 15177 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
| Theorem | imcjd 15178 | Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
| Theorem | cjmulrcld 15179 | A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
| Theorem | cjmulvald 15180 | A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | cjmulge0d 15181 | A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
| Theorem | renegd 15182 | Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
| Theorem | imnegd 15183 | Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
| Theorem | cjnegd 15184 | Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘-𝐴) = -(∗‘𝐴)) | ||
| Theorem | addcjd 15185 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
| Theorem | cjexpd 15186 | Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
| Theorem | readdd 15187 | Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
| Theorem | imaddd 15188 | Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
| Theorem | resubd 15189 | Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
| Theorem | imsubd 15190 | Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
| Theorem | remuld 15191 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | immuld 15192 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
| Theorem | cjaddd 15193 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
| Theorem | cjmuld 15194 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
| Theorem | ipcnd 15195 | Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | cjdivd 15196 | Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | rered 15197 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) | ||
| Theorem | reim0d 15198 | The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) = 0) | ||
| Theorem | cjred 15199 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = 𝐴) | ||
| Theorem | remul2d 15200 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |