MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscrel Structured version   Visualization version   GIF version

Theorem sscrel 17767
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscrel Rel ⊆cat

Proof of Theorem sscrel
Dummy variables 𝑗 𝑠 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssc 17764 . 2 cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
21relopabiv 5820 1 Rel ⊆cat
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1780  wcel 2105  wrex 3069  𝒫 cpw 4602   × cxp 5674  Rel wrel 5681   Fn wfn 6538  cfv 6543  Xcixp 8897  cat cssc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-in 3955  df-ss 3965  df-opab 5211  df-xp 5682  df-rel 5683  df-ssc 17764
This theorem is referenced by:  brssc  17768  ssc1  17775  ssc2  17776  ssctr  17779  issubc  17792
  Copyright terms: Public domain W3C validator