MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscrel Structured version   Visualization version   GIF version

Theorem sscrel 17870
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscrel Rel ⊆cat

Proof of Theorem sscrel
Dummy variables 𝑗 𝑠 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssc 17867 . 2 cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
21relopabiv 5837 1 Rel ⊆cat
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1778  wcel 2108  wrex 3070  𝒫 cpw 4608   × cxp 5691  Rel wrel 5698   Fn wfn 6564  cfv 6569  Xcixp 8945  cat cssc 17864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-ss 3983  df-opab 5214  df-xp 5699  df-rel 5700  df-ssc 17867
This theorem is referenced by:  brssc  17871  ssc1  17878  ssc2  17879  ssctr  17882  issubc  17895
  Copyright terms: Public domain W3C validator