| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscrel | Structured version Visualization version GIF version | ||
| Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| sscrel | ⊢ Rel ⊆cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ssc 17825 | . 2 ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} | |
| 2 | 1 | relopabiv 5810 | 1 ⊢ Rel ⊆cat |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃wrex 3059 𝒫 cpw 4580 × cxp 5663 Rel wrel 5670 Fn wfn 6536 ‘cfv 6541 Xcixp 8919 ⊆cat cssc 17822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-opab 5186 df-xp 5671 df-rel 5672 df-ssc 17825 |
| This theorem is referenced by: brssc 17829 ssc1 17836 ssc2 17837 ssctr 17840 issubc 17851 |
| Copyright terms: Public domain | W3C validator |