![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscrel | Structured version Visualization version GIF version |
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscrel | ⊢ Rel ⊆cat |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ssc 17871 | . 2 ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel ⊆cat |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 𝒫 cpw 4622 × cxp 5698 Rel wrel 5705 Fn wfn 6568 ‘cfv 6573 Xcixp 8955 ⊆cat cssc 17868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-ssc 17871 |
This theorem is referenced by: brssc 17875 ssc1 17882 ssc2 17883 ssctr 17886 issubc 17899 |
Copyright terms: Public domain | W3C validator |