| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscrel | Structured version Visualization version GIF version | ||
| Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| sscrel | ⊢ Rel ⊆cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ssc 17717 | . 2 ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} | |
| 2 | 1 | relopabiv 5763 | 1 ⊢ Rel ⊆cat |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 𝒫 cpw 4551 × cxp 5617 Rel wrel 5624 Fn wfn 6477 ‘cfv 6482 Xcixp 8824 ⊆cat cssc 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 df-ssc 17717 |
| This theorem is referenced by: brssc 17721 ssc1 17728 ssc2 17729 ssctr 17732 issubc 17742 iinfssc 49046 |
| Copyright terms: Public domain | W3C validator |