Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sscrel | Structured version Visualization version GIF version |
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscrel | ⊢ Rel ⊆cat |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ssc 17439 | . 2 ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ⊆cat |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 𝒫 cpw 4530 × cxp 5578 Rel wrel 5585 Fn wfn 6413 ‘cfv 6418 Xcixp 8643 ⊆cat cssc 17436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-ssc 17439 |
This theorem is referenced by: brssc 17443 ssc1 17450 ssc2 17451 ssctr 17454 issubc 17466 |
Copyright terms: Public domain | W3C validator |