MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscrel Structured version   Visualization version   GIF version

Theorem sscrel 17828
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscrel Rel ⊆cat

Proof of Theorem sscrel
Dummy variables 𝑗 𝑠 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssc 17825 . 2 cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
21relopabiv 5810 1 Rel ⊆cat
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1778  wcel 2107  wrex 3059  𝒫 cpw 4580   × cxp 5663  Rel wrel 5670   Fn wfn 6536  cfv 6541  Xcixp 8919  cat cssc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-ss 3948  df-opab 5186  df-xp 5671  df-rel 5672  df-ssc 17825
This theorem is referenced by:  brssc  17829  ssc1  17836  ssc2  17837  ssctr  17840  issubc  17851
  Copyright terms: Public domain W3C validator