Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sscrel | Structured version Visualization version GIF version |
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscrel | ⊢ Rel ⊆cat |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ssc 17522 | . 2 ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel ⊆cat |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 𝒫 cpw 4533 × cxp 5587 Rel wrel 5594 Fn wfn 6428 ‘cfv 6433 Xcixp 8685 ⊆cat cssc 17519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-ssc 17522 |
This theorem is referenced by: brssc 17526 ssc1 17533 ssc2 17534 ssctr 17537 issubc 17550 |
Copyright terms: Public domain | W3C validator |