![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscrel | Structured version Visualization version GIF version |
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscrel | ⊢ Rel ⊆cat |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ssc 17867 | . 2 ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} | |
2 | 1 | relopabiv 5837 | 1 ⊢ Rel ⊆cat |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1778 ∈ wcel 2108 ∃wrex 3070 𝒫 cpw 4608 × cxp 5691 Rel wrel 5698 Fn wfn 6564 ‘cfv 6569 Xcixp 8945 ⊆cat cssc 17864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-ss 3983 df-opab 5214 df-xp 5699 df-rel 5700 df-ssc 17867 |
This theorem is referenced by: brssc 17871 ssc1 17878 ssc2 17879 ssctr 17882 issubc 17895 |
Copyright terms: Public domain | W3C validator |