Step | Hyp | Ref
| Expression |
1 | | sscrel 17525 |
. . 3
⊢ Rel
⊆cat |
2 | 1 | brrelex12i 5642 |
. 2
⊢ (𝐻 ⊆cat 𝐽 → (𝐻 ∈ V ∧ 𝐽 ∈ V)) |
3 | | vex 3436 |
. . . . . 6
⊢ 𝑡 ∈ V |
4 | 3, 3 | xpex 7603 |
. . . . 5
⊢ (𝑡 × 𝑡) ∈ V |
5 | | fnex 7093 |
. . . . 5
⊢ ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V) |
6 | 4, 5 | mpan2 688 |
. . . 4
⊢ (𝐽 Fn (𝑡 × 𝑡) → 𝐽 ∈ V) |
7 | | elex 3450 |
. . . . 5
⊢ (𝐻 ∈ X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 ∈ V) |
8 | 7 | rexlimivw 3211 |
. . . 4
⊢
(∃𝑠 ∈
𝒫 𝑡𝐻 ∈ X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝐽‘𝑥) → 𝐻 ∈ V) |
9 | 6, 8 | anim12ci 614 |
. . 3
⊢ ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V)) |
10 | 9 | exlimiv 1933 |
. 2
⊢
(∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V)) |
11 | | simpr 485 |
. . . . . 6
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽) |
12 | 11 | fneq1d 6526 |
. . . . 5
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → (𝑗 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑡 × 𝑡))) |
13 | | simpl 483 |
. . . . . . 7
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → ℎ = 𝐻) |
14 | 11 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → (𝑗‘𝑥) = (𝐽‘𝑥)) |
15 | 14 | pweqd 4552 |
. . . . . . . 8
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → 𝒫 (𝑗‘𝑥) = 𝒫 (𝐽‘𝑥)) |
16 | 15 | ixpeq2dv 8701 |
. . . . . . 7
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥) = X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)) |
17 | 13, 16 | eleq12d 2833 |
. . . . . 6
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → (ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥) ↔ 𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |
18 | 17 | rexbidv 3226 |
. . . . 5
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → (∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥) ↔ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |
19 | 12, 18 | anbi12d 631 |
. . . 4
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → ((𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥)) ↔ (𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)))) |
20 | 19 | exbidv 1924 |
. . 3
⊢ ((ℎ = 𝐻 ∧ 𝑗 = 𝐽) → (∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥)) ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)))) |
21 | | df-ssc 17522 |
. . 3
⊢
⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} |
22 | 20, 21 | brabga 5447 |
. 2
⊢ ((𝐻 ∈ V ∧ 𝐽 ∈ V) → (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥)))) |
23 | 2, 10, 22 | pm5.21nii 380 |
1
⊢ (𝐻 ⊆cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻 ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽‘𝑥))) |