MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brssc Structured version   Visualization version   GIF version

Theorem brssc 17832
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
brssc (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐻   𝐽,𝑠,𝑡,𝑥

Proof of Theorem brssc
Dummy variables 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscrel 17831 . . 3 Rel ⊆cat
21brrelex12i 5714 . 2 (𝐻cat 𝐽 → (𝐻 ∈ V ∧ 𝐽 ∈ V))
3 vex 3468 . . . . . 6 𝑡 ∈ V
43, 3xpex 7752 . . . . 5 (𝑡 × 𝑡) ∈ V
5 fnex 7214 . . . . 5 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V)
64, 5mpan2 691 . . . 4 (𝐽 Fn (𝑡 × 𝑡) → 𝐽 ∈ V)
7 elex 3485 . . . . 5 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
87rexlimivw 3138 . . . 4 (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
96, 8anim12ci 614 . . 3 ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
109exlimiv 1930 . 2 (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
11 simpr 484 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → 𝑗 = 𝐽)
1211fneq1d 6636 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (𝑗 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑡 × 𝑡)))
13 simpl 482 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → = 𝐻)
1411fveq1d 6883 . . . . . . . . 9 (( = 𝐻𝑗 = 𝐽) → (𝑗𝑥) = (𝐽𝑥))
1514pweqd 4597 . . . . . . . 8 (( = 𝐻𝑗 = 𝐽) → 𝒫 (𝑗𝑥) = 𝒫 (𝐽𝑥))
1615ixpeq2dv 8932 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) = X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))
1713, 16eleq12d 2829 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → (X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ 𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
1817rexbidv 3165 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
1912, 18anbi12d 632 . . . 4 (( = 𝐻𝑗 = 𝐽) → ((𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ (𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
2019exbidv 1921 . . 3 (( = 𝐻𝑗 = 𝐽) → (∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
21 df-ssc 17828 . . 3 cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
2220, 21brabga 5514 . 2 ((𝐻 ∈ V ∧ 𝐽 ∈ V) → (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
232, 10, 22pm5.21nii 378 1 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3061  Vcvv 3464  𝒫 cpw 4580   class class class wbr 5124   × cxp 5657   Fn wfn 6531  cfv 6536  Xcixp 8916  cat cssc 17825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ixp 8917  df-ssc 17828
This theorem is referenced by:  sscpwex  17833  sscfn1  17835  sscfn2  17836  isssc  17838
  Copyright terms: Public domain W3C validator