MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brssc Structured version   Visualization version   GIF version

Theorem brssc 17721
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
brssc (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐻   𝐽,𝑠,𝑡,𝑥

Proof of Theorem brssc
Dummy variables 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscrel 17720 . . 3 Rel ⊆cat
21brrelex12i 5674 . 2 (𝐻cat 𝐽 → (𝐻 ∈ V ∧ 𝐽 ∈ V))
3 vex 3440 . . . . . 6 𝑡 ∈ V
43, 3xpex 7689 . . . . 5 (𝑡 × 𝑡) ∈ V
5 fnex 7153 . . . . 5 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V)
64, 5mpan2 691 . . . 4 (𝐽 Fn (𝑡 × 𝑡) → 𝐽 ∈ V)
7 elex 3457 . . . . 5 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
87rexlimivw 3126 . . . 4 (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
96, 8anim12ci 614 . . 3 ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
109exlimiv 1930 . 2 (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
11 simpr 484 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → 𝑗 = 𝐽)
1211fneq1d 6575 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (𝑗 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑡 × 𝑡)))
13 simpl 482 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → = 𝐻)
1411fveq1d 6824 . . . . . . . . 9 (( = 𝐻𝑗 = 𝐽) → (𝑗𝑥) = (𝐽𝑥))
1514pweqd 4568 . . . . . . . 8 (( = 𝐻𝑗 = 𝐽) → 𝒫 (𝑗𝑥) = 𝒫 (𝐽𝑥))
1615ixpeq2dv 8840 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) = X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))
1713, 16eleq12d 2822 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → (X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ 𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
1817rexbidv 3153 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
1912, 18anbi12d 632 . . . 4 (( = 𝐻𝑗 = 𝐽) → ((𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ (𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
2019exbidv 1921 . . 3 (( = 𝐻𝑗 = 𝐽) → (∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
21 df-ssc 17717 . . 3 cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
2220, 21brabga 5477 . 2 ((𝐻 ∈ V ∧ 𝐽 ∈ V) → (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
232, 10, 22pm5.21nii 378 1 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3436  𝒫 cpw 4551   class class class wbr 5092   × cxp 5617   Fn wfn 6477  cfv 6482  Xcixp 8824  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ixp 8825  df-ssc 17717
This theorem is referenced by:  sscpwex  17722  sscfn1  17724  sscfn2  17725  isssc  17727
  Copyright terms: Public domain W3C validator