MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brssc Structured version   Visualization version   GIF version

Theorem brssc 17875
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
brssc (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐻   𝐽,𝑠,𝑡,𝑥

Proof of Theorem brssc
Dummy variables 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscrel 17874 . . 3 Rel ⊆cat
21brrelex12i 5755 . 2 (𝐻cat 𝐽 → (𝐻 ∈ V ∧ 𝐽 ∈ V))
3 vex 3492 . . . . . 6 𝑡 ∈ V
43, 3xpex 7788 . . . . 5 (𝑡 × 𝑡) ∈ V
5 fnex 7254 . . . . 5 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V)
64, 5mpan2 690 . . . 4 (𝐽 Fn (𝑡 × 𝑡) → 𝐽 ∈ V)
7 elex 3509 . . . . 5 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
87rexlimivw 3157 . . . 4 (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
96, 8anim12ci 613 . . 3 ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
109exlimiv 1929 . 2 (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
11 simpr 484 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → 𝑗 = 𝐽)
1211fneq1d 6672 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (𝑗 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑡 × 𝑡)))
13 simpl 482 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → = 𝐻)
1411fveq1d 6922 . . . . . . . . 9 (( = 𝐻𝑗 = 𝐽) → (𝑗𝑥) = (𝐽𝑥))
1514pweqd 4639 . . . . . . . 8 (( = 𝐻𝑗 = 𝐽) → 𝒫 (𝑗𝑥) = 𝒫 (𝐽𝑥))
1615ixpeq2dv 8971 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) = X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))
1713, 16eleq12d 2838 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → (X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ 𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
1817rexbidv 3185 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
1912, 18anbi12d 631 . . . 4 (( = 𝐻𝑗 = 𝐽) → ((𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ (𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
2019exbidv 1920 . . 3 (( = 𝐻𝑗 = 𝐽) → (∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
21 df-ssc 17871 . . 3 cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
2220, 21brabga 5553 . 2 ((𝐻 ∈ V ∧ 𝐽 ∈ V) → (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
232, 10, 22pm5.21nii 378 1 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698   Fn wfn 6568  cfv 6573  Xcixp 8955  cat cssc 17868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ixp 8956  df-ssc 17871
This theorem is referenced by:  sscpwex  17876  sscfn1  17878  sscfn2  17879  isssc  17881
  Copyright terms: Public domain W3C validator