Detailed syntax breakdown of Definition df-substr
| Step | Hyp | Ref
| Expression |
| 1 | | csubstr 14678 |
. 2
class
substr |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vb |
. . 3
setvar 𝑏 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | cz 12613 |
. . . 4
class
ℤ |
| 6 | 5, 5 | cxp 5683 |
. . 3
class (ℤ
× ℤ) |
| 7 | 3 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 8 | | c1st 8012 |
. . . . . . 7
class
1st |
| 9 | 7, 8 | cfv 6561 |
. . . . . 6
class
(1st ‘𝑏) |
| 10 | | c2nd 8013 |
. . . . . . 7
class
2nd |
| 11 | 7, 10 | cfv 6561 |
. . . . . 6
class
(2nd ‘𝑏) |
| 12 | | cfzo 13694 |
. . . . . 6
class
..^ |
| 13 | 9, 11, 12 | co 7431 |
. . . . 5
class
((1st ‘𝑏)..^(2nd ‘𝑏)) |
| 14 | 2 | cv 1539 |
. . . . . 6
class 𝑠 |
| 15 | 14 | cdm 5685 |
. . . . 5
class dom 𝑠 |
| 16 | 13, 15 | wss 3951 |
. . . 4
wff
((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠 |
| 17 | | vx |
. . . . 5
setvar 𝑥 |
| 18 | | cc0 11155 |
. . . . . 6
class
0 |
| 19 | | cmin 11492 |
. . . . . . 7
class
− |
| 20 | 11, 9, 19 | co 7431 |
. . . . . 6
class
((2nd ‘𝑏) − (1st ‘𝑏)) |
| 21 | 18, 20, 12 | co 7431 |
. . . . 5
class
(0..^((2nd ‘𝑏) − (1st ‘𝑏))) |
| 22 | 17 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 23 | | caddc 11158 |
. . . . . . 7
class
+ |
| 24 | 22, 9, 23 | co 7431 |
. . . . . 6
class (𝑥 + (1st ‘𝑏)) |
| 25 | 24, 14 | cfv 6561 |
. . . . 5
class (𝑠‘(𝑥 + (1st ‘𝑏))) |
| 26 | 17, 21, 25 | cmpt 5225 |
. . . 4
class (𝑥 ∈ (0..^((2nd
‘𝑏) −
(1st ‘𝑏)))
↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) |
| 27 | | c0 4333 |
. . . 4
class
∅ |
| 28 | 16, 26, 27 | cif 4525 |
. . 3
class
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) |
| 29 | 2, 3, 4, 6, 28 | cmpo 7433 |
. 2
class (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |
| 30 | 1, 29 | wceq 1540 |
1
wff substr =
(𝑠 ∈ V, 𝑏 ∈ (ℤ ×
ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |