Detailed syntax breakdown of Definition df-substr
Step | Hyp | Ref
| Expression |
1 | | csubstr 14281 |
. 2
class
substr |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vb |
. . 3
setvar 𝑏 |
4 | | cvv 3422 |
. . 3
class
V |
5 | | cz 12249 |
. . . 4
class
ℤ |
6 | 5, 5 | cxp 5578 |
. . 3
class (ℤ
× ℤ) |
7 | 3 | cv 1538 |
. . . . . . 7
class 𝑏 |
8 | | c1st 7802 |
. . . . . . 7
class
1st |
9 | 7, 8 | cfv 6418 |
. . . . . 6
class
(1st ‘𝑏) |
10 | | c2nd 7803 |
. . . . . . 7
class
2nd |
11 | 7, 10 | cfv 6418 |
. . . . . 6
class
(2nd ‘𝑏) |
12 | | cfzo 13311 |
. . . . . 6
class
..^ |
13 | 9, 11, 12 | co 7255 |
. . . . 5
class
((1st ‘𝑏)..^(2nd ‘𝑏)) |
14 | 2 | cv 1538 |
. . . . . 6
class 𝑠 |
15 | 14 | cdm 5580 |
. . . . 5
class dom 𝑠 |
16 | 13, 15 | wss 3883 |
. . . 4
wff
((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠 |
17 | | vx |
. . . . 5
setvar 𝑥 |
18 | | cc0 10802 |
. . . . . 6
class
0 |
19 | | cmin 11135 |
. . . . . . 7
class
− |
20 | 11, 9, 19 | co 7255 |
. . . . . 6
class
((2nd ‘𝑏) − (1st ‘𝑏)) |
21 | 18, 20, 12 | co 7255 |
. . . . 5
class
(0..^((2nd ‘𝑏) − (1st ‘𝑏))) |
22 | 17 | cv 1538 |
. . . . . . 7
class 𝑥 |
23 | | caddc 10805 |
. . . . . . 7
class
+ |
24 | 22, 9, 23 | co 7255 |
. . . . . 6
class (𝑥 + (1st ‘𝑏)) |
25 | 24, 14 | cfv 6418 |
. . . . 5
class (𝑠‘(𝑥 + (1st ‘𝑏))) |
26 | 17, 21, 25 | cmpt 5153 |
. . . 4
class (𝑥 ∈ (0..^((2nd
‘𝑏) −
(1st ‘𝑏)))
↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) |
27 | | c0 4253 |
. . . 4
class
∅ |
28 | 16, 26, 27 | cif 4456 |
. . 3
class
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) |
29 | 2, 3, 4, 6, 28 | cmpo 7257 |
. 2
class (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |
30 | 1, 29 | wceq 1539 |
1
wff substr =
(𝑠 ∈ V, 𝑏 ∈ (ℤ ×
ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |