MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdcl Structured version   Visualization version   GIF version

Theorem swrdcl 14591
Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdcl (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)

Proof of Theorem swrdcl
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . 2 ((𝑆 substr ⟨𝐹, 𝐿⟩) = ∅ → ((𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴 ↔ ∅ ∈ Word 𝐴))
2 n0 4345 . . . 4 ((𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩))
3 df-substr 14587 . . . . . . 7 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
43elmpocl2 7646 . . . . . 6 (𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
5 opelxp 5711 . . . . . 6 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
64, 5sylib 217 . . . . 5 (𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
76exlimiv 1933 . . . 4 (∃𝑥 𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
82, 7sylbi 216 . . 3 ((𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅ → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9 swrdval 14589 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
10 wrdf 14465 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
11103ad2ant1 1133 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
1211ad2antrr 724 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑆:(0..^(♯‘𝑆))⟶𝐴)
13 simplr 767 . . . . . . . . . . 11 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝐹..^𝐿) ⊆ dom 𝑆)
14 simpr 485 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑥 ∈ (0..^(𝐿𝐹)))
15 simpll3 1214 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐿 ∈ ℤ)
16 simpll2 1213 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐹 ∈ ℤ)
17 fzoaddel2 13684 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^(𝐿𝐹)) ∧ 𝐿 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
1814, 15, 16, 17syl3anc 1371 . . . . . . . . . . 11 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
1913, 18sseldd 3982 . . . . . . . . . 10 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ dom 𝑆)
2012fdmd 6725 . . . . . . . . . 10 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → dom 𝑆 = (0..^(♯‘𝑆)))
2119, 20eleqtrd 2835 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (0..^(♯‘𝑆)))
2212, 21ffvelcdmd 7084 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑆‘(𝑥 + 𝐹)) ∈ 𝐴)
2322fmpttd 7111 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴)
24 iswrdi 14464 . . . . . . 7 ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴 → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
2523, 24syl 17 . . . . . 6 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
26 wrd0 14485 . . . . . . 7 ∅ ∈ Word 𝐴
2726a1i 11 . . . . . 6 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ (𝐹..^𝐿) ⊆ dom 𝑆) → ∅ ∈ Word 𝐴)
2825, 27ifclda 4562 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ Word 𝐴)
299, 28eqeltrd 2833 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
30293expb 1120 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
318, 30sylan2 593 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
3226a1i 11 . 2 (𝑆 ∈ Word 𝐴 → ∅ ∈ Word 𝐴)
331, 31, 32pm2.61ne 3027 1 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087  wex 1781  wcel 2106  wne 2940  Vcvv 3474  wss 3947  c0 4321  ifcif 4527  cop 4633  cmpt 5230   × cxp 5673  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  0cc0 11106   + caddc 11109  cmin 11440  cz 12554  ..^cfzo 13623  chash 14286  Word cword 14460   substr csubstr 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-substr 14587
This theorem is referenced by:  swrdf  14596  swrdspsleq  14611  swrds1  14612  ccatswrd  14614  swrdccat2  14615  pfxcl  14623  ccatpfx  14647  swrdswrd  14651  lenrevpfxcctswrd  14658  pfxccatin12  14679  swrdccat  14681  swrdccat3blem  14685  splcl  14698  spllen  14700  splfv1  14701  splfv2a  14702  splval2  14703  cshwcl  14744  cshwlen  14745  cshwidxmod  14749  gsumspl  18721  psgnunilem2  19357  efgredleme  19605  efgredlemc  19607  efgcpbllemb  19617  frgpuplem  19634  wrdsplex  32091  splfv3  32109  cycpmco2f1  32270  cycpmco2rn  32271  cycpmco2lem2  32273  cycpmco2lem3  32274  cycpmco2lem4  32275  cycpmco2lem5  32276  cycpmco2lem6  32277  cycpmco2  32279  revpfxsfxrev  34094
  Copyright terms: Public domain W3C validator