MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd0 Structured version   Visualization version   GIF version

Theorem swrd0 14371
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0 (∅ substr ⟨𝐹, 𝐿⟩) = ∅

Proof of Theorem swrd0
Dummy variables 𝑥 𝑠 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5625 . . . 4 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)))
2 opelxp 5625 . . . . 5 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 swrdval 14356 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅))
4 fzonlt0 13410 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅))
54biimprd 247 . . . . . . . . . . . . . 14 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) = ∅ → ¬ 𝐹 < 𝐿))
65con2d 134 . . . . . . . . . . . . 13 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 → ¬ (𝐹..^𝐿) = ∅))
76impcom 408 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) = ∅)
8 ss0 4332 . . . . . . . . . . . 12 ((𝐹..^𝐿) ⊆ ∅ → (𝐹..^𝐿) = ∅)
97, 8nsyl 140 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ ∅)
10 dm0 5829 . . . . . . . . . . . . 13 dom ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1211sseq2d 3953 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ dom ∅ ↔ (𝐹..^𝐿) ⊆ ∅))
139, 12mtbird 325 . . . . . . . . . 10 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom ∅)
1413iffalsed 4470 . . . . . . . . 9 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
15 ssidd 3944 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ∅ ⊆ ∅)
164biimpac 479 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) = ∅)
1710a1i 11 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1815, 16, 173sstr4d 3968 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) ⊆ dom ∅)
1918iftrued 4467 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))))
20 zre 12323 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
21 zre 12323 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
22 lenlt 11053 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿𝐹 ↔ ¬ 𝐹 < 𝐿))
2322bicomd 222 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (¬ 𝐹 < 𝐿𝐿𝐹))
2420, 21, 23syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿𝐿𝐹))
25 fzo0n 13409 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
2624, 25bitrd 278 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (0..^(𝐿𝐹)) = ∅))
2726biimpac 479 . . . . . . . . . . . . . 14 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0..^(𝐿𝐹)) = ∅)
2827mpteq1d 5169 . . . . . . . . . . . . 13 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
2928dmeqd 5814 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
30 ral0 4443 . . . . . . . . . . . . 13 𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V
31 dmmptg 6145 . . . . . . . . . . . . 13 (∀𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3230, 31mp1i 13 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3329, 32eqtrd 2778 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
34 mptrel 5735 . . . . . . . . . . . 12 Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹)))
35 reldm0 5837 . . . . . . . . . . . 12 (Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3634, 35mp1i 13 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3733, 36mpbird 256 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3819, 37eqtrd 2778 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
3914, 38pm2.61ian 809 . . . . . . . 8 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
40393adant1 1129 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
413, 40eqtrd 2778 . . . . . 6 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
42413expb 1119 . . . . 5 ((∅ ∈ V ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
432, 42sylan2b 594 . . . 4 ((∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
441, 43sylbi 216 . . 3 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
45 df-substr 14354 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅))
46 ovex 7308 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
4746mptex 7099 . . . . 5 (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))) ∈ V
48 0ex 5231 . . . . 5 ∅ ∈ V
4947, 48ifex 4509 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅) ∈ V
5045, 49dmmpo 7911 . . 3 dom substr = (V × (ℤ × ℤ))
5144, 50eleq2s 2857 . 2 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
52 df-ov 7278 . . 3 (∅ substr ⟨𝐹, 𝐿⟩) = ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩)
53 ndmfv 6804 . . 3 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩) = ∅)
5452, 53eqtrid 2790 . 2 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
5551, 54pm2.61i 182 1 (∅ substr ⟨𝐹, 𝐿⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  c0 4256  ifcif 4459  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  Rel wrel 5594  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  cr 10870  0cc0 10871   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cz 12319  ..^cfzo 13382   substr csubstr 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-substr 14354
This theorem is referenced by:  pfx0  14388  cshword  14504
  Copyright terms: Public domain W3C validator