Step | Hyp | Ref
| Expression |
1 | | opelxp 5616 |
. . . 4
⊢
(〈∅, 〈𝐹, 𝐿〉〉 ∈ (V × (ℤ
× ℤ)) ↔ (∅ ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ ×
ℤ))) |
2 | | opelxp 5616 |
. . . . 5
⊢
(〈𝐹, 𝐿〉 ∈ (ℤ ×
ℤ) ↔ (𝐹 ∈
ℤ ∧ 𝐿 ∈
ℤ)) |
3 | | swrdval 14284 |
. . . . . . 7
⊢ ((∅
∈ V ∧ 𝐹 ∈
ℤ ∧ 𝐿 ∈
ℤ) → (∅ substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅)) |
4 | | fzonlt0 13338 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬
𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅)) |
5 | 4 | biimprd 247 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) = ∅ → ¬ 𝐹 < 𝐿)) |
6 | 5 | con2d 134 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 → ¬ (𝐹..^𝐿) = ∅)) |
7 | 6 | impcom 407 |
. . . . . . . . . . . 12
⊢ ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) = ∅) |
8 | | ss0 4329 |
. . . . . . . . . . . 12
⊢ ((𝐹..^𝐿) ⊆ ∅ → (𝐹..^𝐿) = ∅) |
9 | 7, 8 | nsyl 140 |
. . . . . . . . . . 11
⊢ ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ ∅) |
10 | | dm0 5818 |
. . . . . . . . . . . . 13
⊢ dom
∅ = ∅ |
11 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ =
∅) |
12 | 11 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ dom ∅ ↔ (𝐹..^𝐿) ⊆ ∅)) |
13 | 9, 12 | mtbird 324 |
. . . . . . . . . 10
⊢ ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom ∅) |
14 | 13 | iffalsed 4467 |
. . . . . . . . 9
⊢ ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅) |
15 | | ssidd 3940 |
. . . . . . . . . . . 12
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ∅ ⊆
∅) |
16 | 4 | biimpac 478 |
. . . . . . . . . . . 12
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) = ∅) |
17 | 10 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ =
∅) |
18 | 15, 16, 17 | 3sstr4d 3964 |
. . . . . . . . . . 11
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) ⊆ dom ∅) |
19 | 18 | iftrued 4464 |
. . . . . . . . . 10
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹)))) |
20 | | zre 12253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) |
21 | | zre 12253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ ℤ → 𝐹 ∈
ℝ) |
22 | | lenlt 10984 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 ≤ 𝐹 ↔ ¬ 𝐹 < 𝐿)) |
23 | 22 | bicomd 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (¬
𝐹 < 𝐿 ↔ 𝐿 ≤ 𝐹)) |
24 | 20, 21, 23 | syl2anr 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬
𝐹 < 𝐿 ↔ 𝐿 ≤ 𝐹)) |
25 | | fzo0n 13337 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 ↔ (0..^(𝐿 − 𝐹)) = ∅)) |
26 | 24, 25 | bitrd 278 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬
𝐹 < 𝐿 ↔ (0..^(𝐿 − 𝐹)) = ∅)) |
27 | 26 | biimpac 478 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0..^(𝐿 − 𝐹)) = ∅) |
28 | 27 | mpteq1d 5165 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹)))) |
29 | 28 | dmeqd 5803 |
. . . . . . . . . . . 12
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹)))) |
30 | | ral0 4440 |
. . . . . . . . . . . . 13
⊢
∀𝑥 ∈
∅ (∅‘(𝑥 +
𝐹)) ∈
V |
31 | | dmmptg 6134 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
∅ (∅‘(𝑥 +
𝐹)) ∈ V → dom
(𝑥 ∈ ∅ ↦
(∅‘(𝑥 + 𝐹))) = ∅) |
32 | 30, 31 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ ∅ ↦
(∅‘(𝑥 + 𝐹))) = ∅) |
33 | 29, 32 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅) |
34 | | mptrel 5724 |
. . . . . . . . . . . 12
⊢ Rel
(𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) |
35 | | reldm0 5826 |
. . . . . . . . . . . 12
⊢ (Rel
(𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) → ((𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)) |
36 | 34, 35 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)) |
37 | 33, 36 | mpbird 256 |
. . . . . . . . . 10
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅) |
38 | 19, 37 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((¬
𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅) |
39 | 14, 38 | pm2.61ian 808 |
. . . . . . . 8
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅) |
40 | 39 | 3adant1 1128 |
. . . . . . 7
⊢ ((∅
∈ V ∧ 𝐹 ∈
ℤ ∧ 𝐿 ∈
ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅) |
41 | 3, 40 | eqtrd 2778 |
. . . . . 6
⊢ ((∅
∈ V ∧ 𝐹 ∈
ℤ ∧ 𝐿 ∈
ℤ) → (∅ substr 〈𝐹, 𝐿〉) = ∅) |
42 | 41 | 3expb 1118 |
. . . . 5
⊢ ((∅
∈ V ∧ (𝐹 ∈
ℤ ∧ 𝐿 ∈
ℤ)) → (∅ substr 〈𝐹, 𝐿〉) = ∅) |
43 | 2, 42 | sylan2b 593 |
. . . 4
⊢ ((∅
∈ V ∧ 〈𝐹,
𝐿〉 ∈ (ℤ
× ℤ)) → (∅ substr 〈𝐹, 𝐿〉) = ∅) |
44 | 1, 43 | sylbi 216 |
. . 3
⊢
(〈∅, 〈𝐹, 𝐿〉〉 ∈ (V × (ℤ
× ℤ)) → (∅ substr 〈𝐹, 𝐿〉) = ∅) |
45 | | df-substr 14282 |
. . . 4
⊢ substr =
(𝑠 ∈ V, 𝑏 ∈ (ℤ ×
ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑧 + (1st ‘𝑏)))), ∅)) |
46 | | ovex 7288 |
. . . . . 6
⊢
(0..^((2nd ‘𝑏) − (1st ‘𝑏))) ∈ V |
47 | 46 | mptex 7081 |
. . . . 5
⊢ (𝑧 ∈ (0..^((2nd
‘𝑏) −
(1st ‘𝑏)))
↦ (𝑠‘(𝑧 + (1st ‘𝑏)))) ∈ V |
48 | | 0ex 5226 |
. . . . 5
⊢ ∅
∈ V |
49 | 47, 48 | ifex 4506 |
. . . 4
⊢
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑧 + (1st ‘𝑏)))), ∅) ∈ V |
50 | 45, 49 | dmmpo 7884 |
. . 3
⊢ dom
substr = (V × (ℤ × ℤ)) |
51 | 44, 50 | eleq2s 2857 |
. 2
⊢
(〈∅, 〈𝐹, 𝐿〉〉 ∈ dom substr →
(∅ substr 〈𝐹,
𝐿〉) =
∅) |
52 | | df-ov 7258 |
. . 3
⊢ (∅
substr 〈𝐹, 𝐿〉) = ( substr
‘〈∅, 〈𝐹, 𝐿〉〉) |
53 | | ndmfv 6786 |
. . 3
⊢ (¬
〈∅, 〈𝐹,
𝐿〉〉 ∈ dom
substr → ( substr ‘〈∅, 〈𝐹, 𝐿〉〉) = ∅) |
54 | 52, 53 | eqtrid 2790 |
. 2
⊢ (¬
〈∅, 〈𝐹,
𝐿〉〉 ∈ dom
substr → (∅ substr 〈𝐹, 𝐿〉) = ∅) |
55 | 51, 54 | pm2.61i 182 |
1
⊢ (∅
substr 〈𝐹, 𝐿〉) =
∅ |