MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd0 Structured version   Visualization version   GIF version

Theorem swrd0 14607
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0 (∅ substr ⟨𝐹, 𝐿⟩) = ∅

Proof of Theorem swrd0
Dummy variables 𝑥 𝑠 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5712 . . . 4 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)))
2 opelxp 5712 . . . . 5 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 swrdval 14592 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅))
4 fzonlt0 13654 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅))
54biimprd 247 . . . . . . . . . . . . . 14 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) = ∅ → ¬ 𝐹 < 𝐿))
65con2d 134 . . . . . . . . . . . . 13 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 → ¬ (𝐹..^𝐿) = ∅))
76impcom 408 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) = ∅)
8 ss0 4398 . . . . . . . . . . . 12 ((𝐹..^𝐿) ⊆ ∅ → (𝐹..^𝐿) = ∅)
97, 8nsyl 140 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ ∅)
10 dm0 5920 . . . . . . . . . . . . 13 dom ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1211sseq2d 4014 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ dom ∅ ↔ (𝐹..^𝐿) ⊆ ∅))
139, 12mtbird 324 . . . . . . . . . 10 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom ∅)
1413iffalsed 4539 . . . . . . . . 9 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
15 ssidd 4005 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ∅ ⊆ ∅)
164biimpac 479 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) = ∅)
1710a1i 11 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1815, 16, 173sstr4d 4029 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) ⊆ dom ∅)
1918iftrued 4536 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))))
20 zre 12561 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
21 zre 12561 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
22 lenlt 11291 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿𝐹 ↔ ¬ 𝐹 < 𝐿))
2322bicomd 222 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (¬ 𝐹 < 𝐿𝐿𝐹))
2420, 21, 23syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿𝐿𝐹))
25 fzo0n 13653 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
2624, 25bitrd 278 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (0..^(𝐿𝐹)) = ∅))
2726biimpac 479 . . . . . . . . . . . . . 14 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0..^(𝐿𝐹)) = ∅)
2827mpteq1d 5243 . . . . . . . . . . . . 13 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
2928dmeqd 5905 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
30 ral0 4512 . . . . . . . . . . . . 13 𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V
31 dmmptg 6241 . . . . . . . . . . . . 13 (∀𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3230, 31mp1i 13 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3329, 32eqtrd 2772 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
34 mptrel 5825 . . . . . . . . . . . 12 Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹)))
35 reldm0 5927 . . . . . . . . . . . 12 (Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3634, 35mp1i 13 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3733, 36mpbird 256 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3819, 37eqtrd 2772 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
3914, 38pm2.61ian 810 . . . . . . . 8 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
40393adant1 1130 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
413, 40eqtrd 2772 . . . . . 6 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
42413expb 1120 . . . . 5 ((∅ ∈ V ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
432, 42sylan2b 594 . . . 4 ((∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
441, 43sylbi 216 . . 3 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
45 df-substr 14590 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅))
46 ovex 7441 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
4746mptex 7224 . . . . 5 (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))) ∈ V
48 0ex 5307 . . . . 5 ∅ ∈ V
4947, 48ifex 4578 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅) ∈ V
5045, 49dmmpo 8056 . . 3 dom substr = (V × (ℤ × ℤ))
5144, 50eleq2s 2851 . 2 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
52 df-ov 7411 . . 3 (∅ substr ⟨𝐹, 𝐿⟩) = ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩)
53 ndmfv 6926 . . 3 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩) = ∅)
5452, 53eqtrid 2784 . 2 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
5551, 54pm2.61i 182 1 (∅ substr ⟨𝐹, 𝐿⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  wss 3948  c0 4322  ifcif 4528  cop 4634   class class class wbr 5148  cmpt 5231   × cxp 5674  dom cdm 5676  Rel wrel 5681  cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  cr 11108  0cc0 11109   + caddc 11112   < clt 11247  cle 11248  cmin 11443  cz 12557  ..^cfzo 13626   substr csubstr 14589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-substr 14590
This theorem is referenced by:  pfx0  14624  cshword  14740
  Copyright terms: Public domain W3C validator