MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd0 Structured version   Visualization version   GIF version

Theorem swrd0 14558
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0 (∅ substr ⟨𝐹, 𝐿⟩) = ∅

Proof of Theorem swrd0
Dummy variables 𝑥 𝑠 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5650 . . . 4 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)))
2 opelxp 5650 . . . . 5 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 swrdval 14543 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅))
4 fzonlt0 13574 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅))
54biimprd 248 . . . . . . . . . . . . . 14 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) = ∅ → ¬ 𝐹 < 𝐿))
65con2d 134 . . . . . . . . . . . . 13 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 → ¬ (𝐹..^𝐿) = ∅))
76impcom 407 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) = ∅)
8 ss0 4350 . . . . . . . . . . . 12 ((𝐹..^𝐿) ⊆ ∅ → (𝐹..^𝐿) = ∅)
97, 8nsyl 140 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ ∅)
10 dm0 5858 . . . . . . . . . . . . 13 dom ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1211sseq2d 3965 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ dom ∅ ↔ (𝐹..^𝐿) ⊆ ∅))
139, 12mtbird 325 . . . . . . . . . 10 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom ∅)
1413iffalsed 4484 . . . . . . . . 9 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
15 ssidd 3956 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ∅ ⊆ ∅)
164biimpac 478 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) = ∅)
1710a1i 11 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1815, 16, 173sstr4d 3988 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) ⊆ dom ∅)
1918iftrued 4481 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))))
20 zre 12464 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
21 zre 12464 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
22 lenlt 11183 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿𝐹 ↔ ¬ 𝐹 < 𝐿))
2322bicomd 223 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (¬ 𝐹 < 𝐿𝐿𝐹))
2420, 21, 23syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿𝐿𝐹))
25 fzo0n 13573 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
2624, 25bitrd 279 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (0..^(𝐿𝐹)) = ∅))
2726biimpac 478 . . . . . . . . . . . . . 14 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0..^(𝐿𝐹)) = ∅)
2827mpteq1d 5179 . . . . . . . . . . . . 13 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
2928dmeqd 5843 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
30 ral0 4461 . . . . . . . . . . . . 13 𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V
31 dmmptg 6186 . . . . . . . . . . . . 13 (∀𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3230, 31mp1i 13 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3329, 32eqtrd 2765 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
34 mptrel 5763 . . . . . . . . . . . 12 Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹)))
35 reldm0 5865 . . . . . . . . . . . 12 (Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3634, 35mp1i 13 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3733, 36mpbird 257 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3819, 37eqtrd 2765 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
3914, 38pm2.61ian 811 . . . . . . . 8 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
40393adant1 1130 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
413, 40eqtrd 2765 . . . . . 6 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
42413expb 1120 . . . . 5 ((∅ ∈ V ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
432, 42sylan2b 594 . . . 4 ((∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
441, 43sylbi 217 . . 3 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
45 df-substr 14541 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅))
46 ovex 7374 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
4746mptex 7152 . . . . 5 (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))) ∈ V
48 0ex 5243 . . . . 5 ∅ ∈ V
4947, 48ifex 4524 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅) ∈ V
5045, 49dmmpo 7998 . . 3 dom substr = (V × (ℤ × ℤ))
5144, 50eleq2s 2847 . 2 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
52 df-ov 7344 . . 3 (∅ substr ⟨𝐹, 𝐿⟩) = ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩)
53 ndmfv 6849 . . 3 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩) = ∅)
5452, 53eqtrid 2777 . 2 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
5551, 54pm2.61i 182 1 (∅ substr ⟨𝐹, 𝐿⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  wss 3900  c0 4281  ifcif 4473  cop 4580   class class class wbr 5089  cmpt 5170   × cxp 5612  dom cdm 5614  Rel wrel 5619  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  cr 10997  0cc0 10998   + caddc 11001   < clt 11138  cle 11139  cmin 11336  cz 12460  ..^cfzo 13546   substr csubstr 14540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-substr 14541
This theorem is referenced by:  pfx0  14575  cshword  14690
  Copyright terms: Public domain W3C validator