MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd0 Structured version   Visualization version   GIF version

Theorem swrd0 14630
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0 (∅ substr ⟨𝐹, 𝐿⟩) = ∅

Proof of Theorem swrd0
Dummy variables 𝑥 𝑠 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5677 . . . 4 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)))
2 opelxp 5677 . . . . 5 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 swrdval 14615 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅))
4 fzonlt0 13650 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅))
54biimprd 248 . . . . . . . . . . . . . 14 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) = ∅ → ¬ 𝐹 < 𝐿))
65con2d 134 . . . . . . . . . . . . 13 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 → ¬ (𝐹..^𝐿) = ∅))
76impcom 407 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) = ∅)
8 ss0 4368 . . . . . . . . . . . 12 ((𝐹..^𝐿) ⊆ ∅ → (𝐹..^𝐿) = ∅)
97, 8nsyl 140 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ ∅)
10 dm0 5887 . . . . . . . . . . . . 13 dom ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1211sseq2d 3982 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ dom ∅ ↔ (𝐹..^𝐿) ⊆ ∅))
139, 12mtbird 325 . . . . . . . . . 10 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom ∅)
1413iffalsed 4502 . . . . . . . . 9 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
15 ssidd 3973 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ∅ ⊆ ∅)
164biimpac 478 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) = ∅)
1710a1i 11 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1815, 16, 173sstr4d 4005 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) ⊆ dom ∅)
1918iftrued 4499 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))))
20 zre 12540 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
21 zre 12540 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
22 lenlt 11259 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿𝐹 ↔ ¬ 𝐹 < 𝐿))
2322bicomd 223 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (¬ 𝐹 < 𝐿𝐿𝐹))
2420, 21, 23syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿𝐿𝐹))
25 fzo0n 13649 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
2624, 25bitrd 279 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (0..^(𝐿𝐹)) = ∅))
2726biimpac 478 . . . . . . . . . . . . . 14 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0..^(𝐿𝐹)) = ∅)
2827mpteq1d 5200 . . . . . . . . . . . . 13 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
2928dmeqd 5872 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
30 ral0 4479 . . . . . . . . . . . . 13 𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V
31 dmmptg 6218 . . . . . . . . . . . . 13 (∀𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3230, 31mp1i 13 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3329, 32eqtrd 2765 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
34 mptrel 5791 . . . . . . . . . . . 12 Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹)))
35 reldm0 5894 . . . . . . . . . . . 12 (Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3634, 35mp1i 13 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3733, 36mpbird 257 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3819, 37eqtrd 2765 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
3914, 38pm2.61ian 811 . . . . . . . 8 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
40393adant1 1130 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
413, 40eqtrd 2765 . . . . . 6 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
42413expb 1120 . . . . 5 ((∅ ∈ V ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
432, 42sylan2b 594 . . . 4 ((∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
441, 43sylbi 217 . . 3 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
45 df-substr 14613 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅))
46 ovex 7423 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
4746mptex 7200 . . . . 5 (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))) ∈ V
48 0ex 5265 . . . . 5 ∅ ∈ V
4947, 48ifex 4542 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅) ∈ V
5045, 49dmmpo 8053 . . 3 dom substr = (V × (ℤ × ℤ))
5144, 50eleq2s 2847 . 2 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
52 df-ov 7393 . . 3 (∅ substr ⟨𝐹, 𝐿⟩) = ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩)
53 ndmfv 6896 . . 3 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩) = ∅)
5452, 53eqtrid 2777 . 2 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
5551, 54pm2.61i 182 1 (∅ substr ⟨𝐹, 𝐿⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  c0 4299  ifcif 4491  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cz 12536  ..^cfzo 13622   substr csubstr 14612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-substr 14613
This theorem is referenced by:  pfx0  14647  cshword  14763
  Copyright terms: Public domain W3C validator