MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdval Structured version   Visualization version   GIF version

Theorem swrdval 14543
Description: Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
swrdval ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
Distinct variable groups:   𝑥,𝑆   𝑥,𝐹   𝑥,𝐿   𝑥,𝑉

Proof of Theorem swrdval
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-substr 14541 . . 3 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
21a1i 11 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅)))
3 simprl 770 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → 𝑠 = 𝑆)
4 fveq2 6817 . . . . 5 (𝑏 = ⟨𝐹, 𝐿⟩ → (1st𝑏) = (1st ‘⟨𝐹, 𝐿⟩))
54adantl 481 . . . 4 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩) → (1st𝑏) = (1st ‘⟨𝐹, 𝐿⟩))
6 op1stg 7928 . . . . 5 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1st ‘⟨𝐹, 𝐿⟩) = 𝐹)
763adant1 1130 . . . 4 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1st ‘⟨𝐹, 𝐿⟩) = 𝐹)
85, 7sylan9eqr 2787 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → (1st𝑏) = 𝐹)
9 fveq2 6817 . . . . 5 (𝑏 = ⟨𝐹, 𝐿⟩ → (2nd𝑏) = (2nd ‘⟨𝐹, 𝐿⟩))
109adantl 481 . . . 4 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝐿⟩))
11 op2ndg 7929 . . . . 5 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (2nd ‘⟨𝐹, 𝐿⟩) = 𝐿)
12113adant1 1130 . . . 4 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (2nd ‘⟨𝐹, 𝐿⟩) = 𝐿)
1310, 12sylan9eqr 2787 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → (2nd𝑏) = 𝐿)
14 simp2 1137 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (1st𝑏) = 𝐹)
15 simp3 1138 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (2nd𝑏) = 𝐿)
1614, 15oveq12d 7359 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → ((1st𝑏)..^(2nd𝑏)) = (𝐹..^𝐿))
17 simp1 1136 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → 𝑠 = 𝑆)
1817dmeqd 5843 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → dom 𝑠 = dom 𝑆)
1916, 18sseq12d 3966 . . . 4 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠 ↔ (𝐹..^𝐿) ⊆ dom 𝑆))
2015, 14oveq12d 7359 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → ((2nd𝑏) − (1st𝑏)) = (𝐿𝐹))
2120oveq2d 7357 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (0..^((2nd𝑏) − (1st𝑏))) = (0..^(𝐿𝐹)))
2214oveq2d 7357 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑥 + (1st𝑏)) = (𝑥 + 𝐹))
2317, 22fveq12d 6824 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑠‘(𝑥 + (1st𝑏))) = (𝑆‘(𝑥 + 𝐹)))
2421, 23mpteq12dv 5176 . . . 4 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
2519, 24ifbieq1d 4498 . . 3 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
263, 8, 13, 25syl3anc 1373 . 2 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
27 elex 3455 . . 3 (𝑆𝑉𝑆 ∈ V)
28273ad2ant1 1133 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆 ∈ V)
29 opelxpi 5651 . . 3 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
30293adant1 1130 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
31 ovex 7374 . . . . 5 (0..^(𝐿𝐹)) ∈ V
3231mptex 7152 . . . 4 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ V
33 0ex 5243 . . . 4 ∅ ∈ V
3432, 33ifex 4524 . . 3 if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ V
3534a1i 11 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ V)
362, 26, 28, 30, 35ovmpod 7493 1 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  Vcvv 3434  wss 3900  c0 4281  ifcif 4473  cop 4580  cmpt 5170   × cxp 5612  dom cdm 5614  cfv 6477  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  0cc0 10998   + caddc 11001  cmin 11336  cz 12460  ..^cfzo 13546   substr csubstr 14540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-substr 14541
This theorem is referenced by:  swrd00  14544  swrdcl  14545  swrdval2  14546  swrdlend  14553  swrdnd  14554  swrdnd2  14555  swrd0  14558  repswswrd  14683
  Copyright terms: Public domain W3C validator