MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdval Structured version   Visualization version   GIF version

Theorem swrdval 14681
Description: Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
swrdval ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
Distinct variable groups:   𝑥,𝑆   𝑥,𝐹   𝑥,𝐿   𝑥,𝑉

Proof of Theorem swrdval
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-substr 14679 . . 3 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
21a1i 11 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅)))
3 simprl 771 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → 𝑠 = 𝑆)
4 fveq2 6906 . . . . 5 (𝑏 = ⟨𝐹, 𝐿⟩ → (1st𝑏) = (1st ‘⟨𝐹, 𝐿⟩))
54adantl 481 . . . 4 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩) → (1st𝑏) = (1st ‘⟨𝐹, 𝐿⟩))
6 op1stg 8026 . . . . 5 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1st ‘⟨𝐹, 𝐿⟩) = 𝐹)
763adant1 1131 . . . 4 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1st ‘⟨𝐹, 𝐿⟩) = 𝐹)
85, 7sylan9eqr 2799 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → (1st𝑏) = 𝐹)
9 fveq2 6906 . . . . 5 (𝑏 = ⟨𝐹, 𝐿⟩ → (2nd𝑏) = (2nd ‘⟨𝐹, 𝐿⟩))
109adantl 481 . . . 4 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝐿⟩))
11 op2ndg 8027 . . . . 5 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (2nd ‘⟨𝐹, 𝐿⟩) = 𝐿)
12113adant1 1131 . . . 4 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (2nd ‘⟨𝐹, 𝐿⟩) = 𝐿)
1310, 12sylan9eqr 2799 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → (2nd𝑏) = 𝐿)
14 simp2 1138 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (1st𝑏) = 𝐹)
15 simp3 1139 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (2nd𝑏) = 𝐿)
1614, 15oveq12d 7449 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → ((1st𝑏)..^(2nd𝑏)) = (𝐹..^𝐿))
17 simp1 1137 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → 𝑠 = 𝑆)
1817dmeqd 5916 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → dom 𝑠 = dom 𝑆)
1916, 18sseq12d 4017 . . . 4 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠 ↔ (𝐹..^𝐿) ⊆ dom 𝑆))
2015, 14oveq12d 7449 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → ((2nd𝑏) − (1st𝑏)) = (𝐿𝐹))
2120oveq2d 7447 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (0..^((2nd𝑏) − (1st𝑏))) = (0..^(𝐿𝐹)))
2214oveq2d 7447 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑥 + (1st𝑏)) = (𝑥 + 𝐹))
2317, 22fveq12d 6913 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑠‘(𝑥 + (1st𝑏))) = (𝑆‘(𝑥 + 𝐹)))
2421, 23mpteq12dv 5233 . . . 4 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
2519, 24ifbieq1d 4550 . . 3 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
263, 8, 13, 25syl3anc 1373 . 2 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
27 elex 3501 . . 3 (𝑆𝑉𝑆 ∈ V)
28273ad2ant1 1134 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆 ∈ V)
29 opelxpi 5722 . . 3 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
30293adant1 1131 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
31 ovex 7464 . . . . 5 (0..^(𝐿𝐹)) ∈ V
3231mptex 7243 . . . 4 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ V
33 0ex 5307 . . . 4 ∅ ∈ V
3432, 33ifex 4576 . . 3 if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ V
3534a1i 11 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ V)
362, 26, 28, 30, 35ovmpod 7585 1 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  c0 4333  ifcif 4525  cop 4632  cmpt 5225   × cxp 5683  dom cdm 5685  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013  0cc0 11155   + caddc 11158  cmin 11492  cz 12613  ..^cfzo 13694   substr csubstr 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-substr 14679
This theorem is referenced by:  swrd00  14682  swrdcl  14683  swrdval2  14684  swrdlend  14691  swrdnd  14692  swrdnd2  14693  swrd0  14696  repswswrd  14822
  Copyright terms: Public domain W3C validator