MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdval Structured version   Visualization version   GIF version

Theorem swrdval 14615
Description: Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
swrdval ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
Distinct variable groups:   𝑥,𝑆   𝑥,𝐹   𝑥,𝐿   𝑥,𝑉

Proof of Theorem swrdval
Dummy variables 𝑠 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-substr 14613 . . 3 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
21a1i 11 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅)))
3 simprl 770 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → 𝑠 = 𝑆)
4 fveq2 6861 . . . . 5 (𝑏 = ⟨𝐹, 𝐿⟩ → (1st𝑏) = (1st ‘⟨𝐹, 𝐿⟩))
54adantl 481 . . . 4 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩) → (1st𝑏) = (1st ‘⟨𝐹, 𝐿⟩))
6 op1stg 7983 . . . . 5 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1st ‘⟨𝐹, 𝐿⟩) = 𝐹)
763adant1 1130 . . . 4 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1st ‘⟨𝐹, 𝐿⟩) = 𝐹)
85, 7sylan9eqr 2787 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → (1st𝑏) = 𝐹)
9 fveq2 6861 . . . . 5 (𝑏 = ⟨𝐹, 𝐿⟩ → (2nd𝑏) = (2nd ‘⟨𝐹, 𝐿⟩))
109adantl 481 . . . 4 ((𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝐿⟩))
11 op2ndg 7984 . . . . 5 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (2nd ‘⟨𝐹, 𝐿⟩) = 𝐿)
12113adant1 1130 . . . 4 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (2nd ‘⟨𝐹, 𝐿⟩) = 𝐿)
1310, 12sylan9eqr 2787 . . 3 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → (2nd𝑏) = 𝐿)
14 simp2 1137 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (1st𝑏) = 𝐹)
15 simp3 1138 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (2nd𝑏) = 𝐿)
1614, 15oveq12d 7408 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → ((1st𝑏)..^(2nd𝑏)) = (𝐹..^𝐿))
17 simp1 1136 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → 𝑠 = 𝑆)
1817dmeqd 5872 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → dom 𝑠 = dom 𝑆)
1916, 18sseq12d 3983 . . . 4 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠 ↔ (𝐹..^𝐿) ⊆ dom 𝑆))
2015, 14oveq12d 7408 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → ((2nd𝑏) − (1st𝑏)) = (𝐿𝐹))
2120oveq2d 7406 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (0..^((2nd𝑏) − (1st𝑏))) = (0..^(𝐿𝐹)))
2214oveq2d 7406 . . . . . 6 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑥 + (1st𝑏)) = (𝑥 + 𝐹))
2317, 22fveq12d 6868 . . . . 5 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑠‘(𝑥 + (1st𝑏))) = (𝑆‘(𝑥 + 𝐹)))
2421, 23mpteq12dv 5197 . . . 4 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
2519, 24ifbieq1d 4516 . . 3 ((𝑠 = 𝑆 ∧ (1st𝑏) = 𝐹 ∧ (2nd𝑏) = 𝐿) → if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
263, 8, 13, 25syl3anc 1373 . 2 (((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆𝑏 = ⟨𝐹, 𝐿⟩)) → if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
27 elex 3471 . . 3 (𝑆𝑉𝑆 ∈ V)
28273ad2ant1 1133 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆 ∈ V)
29 opelxpi 5678 . . 3 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
30293adant1 1130 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
31 ovex 7423 . . . . 5 (0..^(𝐿𝐹)) ∈ V
3231mptex 7200 . . . 4 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ V
33 0ex 5265 . . . 4 ∅ ∈ V
3432, 33ifex 4542 . . 3 if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ V
3534a1i 11 . 2 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ V)
362, 26, 28, 30, 35ovmpod 7544 1 ((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  c0 4299  ifcif 4491  cop 4598  cmpt 5191   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  0cc0 11075   + caddc 11078  cmin 11412  cz 12536  ..^cfzo 13622   substr csubstr 14612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-substr 14613
This theorem is referenced by:  swrd00  14616  swrdcl  14617  swrdval2  14618  swrdlend  14625  swrdnd  14626  swrdnd2  14627  swrd0  14630  repswswrd  14756
  Copyright terms: Public domain W3C validator