Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swrd00 | Structured version Visualization version GIF version |
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
swrd00 | ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5636 | . . . 4 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ))) | |
2 | opelxp 5636 | . . . . 5 ⊢ (〈𝑋, 𝑋〉 ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) | |
3 | swrdval 14405 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅)) | |
4 | fzo0 13461 | . . . . . . . . . 10 ⊢ (𝑋..^𝑋) = ∅ | |
5 | 0ss 4336 | . . . . . . . . . 10 ⊢ ∅ ⊆ dom 𝑆 | |
6 | 4, 5 | eqsstri 3960 | . . . . . . . . 9 ⊢ (𝑋..^𝑋) ⊆ dom 𝑆 |
7 | 6 | iftruei 4472 | . . . . . . . 8 ⊢ if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) |
8 | zcn 12374 | . . . . . . . . . . . . . 14 ⊢ (𝑋 ∈ ℤ → 𝑋 ∈ ℂ) | |
9 | 8 | subidd 11370 | . . . . . . . . . . . . 13 ⊢ (𝑋 ∈ ℤ → (𝑋 − 𝑋) = 0) |
10 | 9 | oveq2d 7323 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ ℤ → (0..^(𝑋 − 𝑋)) = (0..^0)) |
11 | 10 | 3ad2ant2 1134 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = (0..^0)) |
12 | fzo0 13461 | . . . . . . . . . . 11 ⊢ (0..^0) = ∅ | |
13 | 11, 12 | eqtrdi 2792 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = ∅) |
14 | 13 | mpteq1d 5176 | . . . . . . . . 9 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋)))) |
15 | mpt0 6605 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅ | |
16 | 14, 15 | eqtrdi 2792 | . . . . . . . 8 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅) |
17 | 7, 16 | eqtrid 2788 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅) |
18 | 3, 17 | eqtrd 2776 | . . . . . 6 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
19 | 18 | 3expb 1120 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
20 | 2, 19 | sylan2b 595 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
21 | 1, 20 | sylbi 216 | . . 3 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
22 | df-substr 14403 | . . . 4 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
23 | ovex 7340 | . . . . . 6 ⊢ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ∈ V | |
24 | 23 | mptex 7131 | . . . . 5 ⊢ (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) ∈ V |
25 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
26 | 24, 25 | ifex 4515 | . . . 4 ⊢ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) ∈ V |
27 | 22, 26 | dmmpo 7943 | . . 3 ⊢ dom substr = (V × (ℤ × ℤ)) |
28 | 21, 27 | eleq2s 2855 | . 2 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
29 | df-ov 7310 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) | |
30 | ndmfv 6836 | . . 3 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) = ∅) | |
31 | 29, 30 | eqtrid 2788 | . 2 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
32 | 28, 31 | pm2.61i 182 | 1 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 ∅c0 4262 ifcif 4465 〈cop 4571 ↦ cmpt 5164 × cxp 5598 dom cdm 5600 ‘cfv 6458 (class class class)co 7307 1st c1st 7861 2nd c2nd 7862 0cc0 10921 + caddc 10924 − cmin 11255 ℤcz 12369 ..^cfzo 13432 substr csubstr 14402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-fzo 13433 df-substr 14403 |
This theorem is referenced by: pfx00 14436 swrdccatin1 14487 swrdccat3blem 14501 |
Copyright terms: Public domain | W3C validator |