MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd00 Structured version   Visualization version   GIF version

Theorem swrd00 14598
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
swrd00 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅

Proof of Theorem swrd00
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5705 . . . 4 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)))
2 opelxp 5705 . . . . 5 (⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ))
3 swrdval 14597 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅))
4 fzo0 13659 . . . . . . . . . 10 (𝑋..^𝑋) = ∅
5 0ss 4391 . . . . . . . . . 10 ∅ ⊆ dom 𝑆
64, 5eqsstri 4011 . . . . . . . . 9 (𝑋..^𝑋) ⊆ dom 𝑆
76iftruei 4530 . . . . . . . 8 if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋)))
8 zcn 12564 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
98subidd 11560 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (𝑋𝑋) = 0)
109oveq2d 7420 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (0..^(𝑋𝑋)) = (0..^0))
11103ad2ant2 1131 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = (0..^0))
12 fzo0 13659 . . . . . . . . . . 11 (0..^0) = ∅
1311, 12eqtrdi 2782 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = ∅)
1413mpteq1d 5236 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))))
15 mpt0 6685 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅
1614, 15eqtrdi 2782 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅)
177, 16eqtrid 2778 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅)
183, 17eqtrd 2766 . . . . . 6 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
19183expb 1117 . . . . 5 ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
202, 19sylan2b 593 . . . 4 ((𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
211, 20sylbi 216 . . 3 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
22 df-substr 14595 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
23 ovex 7437 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
2423mptex 7219 . . . . 5 (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))) ∈ V
25 0ex 5300 . . . . 5 ∅ ∈ V
2624, 25ifex 4573 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) ∈ V
2722, 26dmmpo 8053 . . 3 dom substr = (V × (ℤ × ℤ))
2821, 27eleq2s 2845 . 2 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
29 df-ov 7407 . . 3 (𝑆 substr ⟨𝑋, 𝑋⟩) = ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩)
30 ndmfv 6919 . . 3 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩) = ∅)
3129, 30eqtrid 2778 . 2 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
3228, 31pm2.61i 182 1 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3468  wss 3943  c0 4317  ifcif 4523  cop 4629  cmpt 5224   × cxp 5667  dom cdm 5669  cfv 6536  (class class class)co 7404  1st c1st 7969  2nd c2nd 7970  0cc0 11109   + caddc 11112  cmin 11445  cz 12559  ..^cfzo 13630   substr csubstr 14594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-substr 14595
This theorem is referenced by:  pfx00  14628  swrdccatin1  14679  swrdccat3blem  14693
  Copyright terms: Public domain W3C validator