| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrd00 | Structured version Visualization version GIF version | ||
| Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| swrd00 | ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5690 | . . . 4 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ))) | |
| 2 | opelxp 5690 | . . . . 5 ⊢ (〈𝑋, 𝑋〉 ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) | |
| 3 | swrdval 14661 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅)) | |
| 4 | fzo0 13700 | . . . . . . . . . 10 ⊢ (𝑋..^𝑋) = ∅ | |
| 5 | 0ss 4375 | . . . . . . . . . 10 ⊢ ∅ ⊆ dom 𝑆 | |
| 6 | 4, 5 | eqsstri 4005 | . . . . . . . . 9 ⊢ (𝑋..^𝑋) ⊆ dom 𝑆 |
| 7 | 6 | iftruei 4507 | . . . . . . . 8 ⊢ if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) |
| 8 | zcn 12593 | . . . . . . . . . . . . . 14 ⊢ (𝑋 ∈ ℤ → 𝑋 ∈ ℂ) | |
| 9 | 8 | subidd 11582 | . . . . . . . . . . . . 13 ⊢ (𝑋 ∈ ℤ → (𝑋 − 𝑋) = 0) |
| 10 | 9 | oveq2d 7421 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ ℤ → (0..^(𝑋 − 𝑋)) = (0..^0)) |
| 11 | 10 | 3ad2ant2 1134 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = (0..^0)) |
| 12 | fzo0 13700 | . . . . . . . . . . 11 ⊢ (0..^0) = ∅ | |
| 13 | 11, 12 | eqtrdi 2786 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = ∅) |
| 14 | 13 | mpteq1d 5210 | . . . . . . . . 9 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋)))) |
| 15 | mpt0 6680 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅ | |
| 16 | 14, 15 | eqtrdi 2786 | . . . . . . . 8 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅) |
| 17 | 7, 16 | eqtrid 2782 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅) |
| 18 | 3, 17 | eqtrd 2770 | . . . . . 6 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 19 | 18 | 3expb 1120 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 20 | 2, 19 | sylan2b 594 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 21 | 1, 20 | sylbi 217 | . . 3 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 22 | df-substr 14659 | . . . 4 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
| 23 | ovex 7438 | . . . . . 6 ⊢ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ∈ V | |
| 24 | 23 | mptex 7215 | . . . . 5 ⊢ (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) ∈ V |
| 25 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 26 | 24, 25 | ifex 4551 | . . . 4 ⊢ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) ∈ V |
| 27 | 22, 26 | dmmpo 8070 | . . 3 ⊢ dom substr = (V × (ℤ × ℤ)) |
| 28 | 21, 27 | eleq2s 2852 | . 2 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 29 | df-ov 7408 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) | |
| 30 | ndmfv 6911 | . . 3 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) = ∅) | |
| 31 | 29, 30 | eqtrid 2782 | . 2 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 32 | 28, 31 | pm2.61i 182 | 1 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ifcif 4500 〈cop 4607 ↦ cmpt 5201 × cxp 5652 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 0cc0 11129 + caddc 11132 − cmin 11466 ℤcz 12588 ..^cfzo 13671 substr csubstr 14658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-substr 14659 |
| This theorem is referenced by: pfx00 14692 swrdccatin1 14743 swrdccat3blem 14757 |
| Copyright terms: Public domain | W3C validator |