| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrd00 | Structured version Visualization version GIF version | ||
| Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| swrd00 | ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5655 | . . . 4 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ))) | |
| 2 | opelxp 5655 | . . . . 5 ⊢ (〈𝑋, 𝑋〉 ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) | |
| 3 | swrdval 14553 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅)) | |
| 4 | fzo0 13585 | . . . . . . . . . 10 ⊢ (𝑋..^𝑋) = ∅ | |
| 5 | 0ss 4349 | . . . . . . . . . 10 ⊢ ∅ ⊆ dom 𝑆 | |
| 6 | 4, 5 | eqsstri 3977 | . . . . . . . . 9 ⊢ (𝑋..^𝑋) ⊆ dom 𝑆 |
| 7 | 6 | iftruei 4481 | . . . . . . . 8 ⊢ if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) |
| 8 | zcn 12480 | . . . . . . . . . . . . . 14 ⊢ (𝑋 ∈ ℤ → 𝑋 ∈ ℂ) | |
| 9 | 8 | subidd 11467 | . . . . . . . . . . . . 13 ⊢ (𝑋 ∈ ℤ → (𝑋 − 𝑋) = 0) |
| 10 | 9 | oveq2d 7368 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ ℤ → (0..^(𝑋 − 𝑋)) = (0..^0)) |
| 11 | 10 | 3ad2ant2 1134 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = (0..^0)) |
| 12 | fzo0 13585 | . . . . . . . . . . 11 ⊢ (0..^0) = ∅ | |
| 13 | 11, 12 | eqtrdi 2784 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = ∅) |
| 14 | 13 | mpteq1d 5183 | . . . . . . . . 9 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋)))) |
| 15 | mpt0 6628 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅ | |
| 16 | 14, 15 | eqtrdi 2784 | . . . . . . . 8 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅) |
| 17 | 7, 16 | eqtrid 2780 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅) |
| 18 | 3, 17 | eqtrd 2768 | . . . . . 6 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 19 | 18 | 3expb 1120 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 20 | 2, 19 | sylan2b 594 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 21 | 1, 20 | sylbi 217 | . . 3 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 22 | df-substr 14551 | . . . 4 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
| 23 | ovex 7385 | . . . . . 6 ⊢ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ∈ V | |
| 24 | 23 | mptex 7163 | . . . . 5 ⊢ (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) ∈ V |
| 25 | 0ex 5247 | . . . . 5 ⊢ ∅ ∈ V | |
| 26 | 24, 25 | ifex 4525 | . . . 4 ⊢ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) ∈ V |
| 27 | 22, 26 | dmmpo 8009 | . . 3 ⊢ dom substr = (V × (ℤ × ℤ)) |
| 28 | 21, 27 | eleq2s 2851 | . 2 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 29 | df-ov 7355 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) | |
| 30 | ndmfv 6860 | . . 3 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) = ∅) | |
| 31 | 29, 30 | eqtrid 2780 | . 2 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 32 | 28, 31 | pm2.61i 182 | 1 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 ifcif 4474 〈cop 4581 ↦ cmpt 5174 × cxp 5617 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 0cc0 11013 + caddc 11016 − cmin 11351 ℤcz 12475 ..^cfzo 13556 substr csubstr 14550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-substr 14551 |
| This theorem is referenced by: pfx00 14584 swrdccatin1 14634 swrdccat3blem 14648 |
| Copyright terms: Public domain | W3C validator |