MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd00 Structured version   Visualization version   GIF version

Theorem swrd00 14682
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
swrd00 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅

Proof of Theorem swrd00
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5721 . . . 4 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)))
2 opelxp 5721 . . . . 5 (⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ))
3 swrdval 14681 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅))
4 fzo0 13723 . . . . . . . . . 10 (𝑋..^𝑋) = ∅
5 0ss 4400 . . . . . . . . . 10 ∅ ⊆ dom 𝑆
64, 5eqsstri 4030 . . . . . . . . 9 (𝑋..^𝑋) ⊆ dom 𝑆
76iftruei 4532 . . . . . . . 8 if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋)))
8 zcn 12618 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
98subidd 11608 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (𝑋𝑋) = 0)
109oveq2d 7447 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (0..^(𝑋𝑋)) = (0..^0))
11103ad2ant2 1135 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = (0..^0))
12 fzo0 13723 . . . . . . . . . . 11 (0..^0) = ∅
1311, 12eqtrdi 2793 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = ∅)
1413mpteq1d 5237 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))))
15 mpt0 6710 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅
1614, 15eqtrdi 2793 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅)
177, 16eqtrid 2789 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅)
183, 17eqtrd 2777 . . . . . 6 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
19183expb 1121 . . . . 5 ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
202, 19sylan2b 594 . . . 4 ((𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
211, 20sylbi 217 . . 3 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
22 df-substr 14679 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
23 ovex 7464 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
2423mptex 7243 . . . . 5 (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))) ∈ V
25 0ex 5307 . . . . 5 ∅ ∈ V
2624, 25ifex 4576 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) ∈ V
2722, 26dmmpo 8096 . . 3 dom substr = (V × (ℤ × ℤ))
2821, 27eleq2s 2859 . 2 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
29 df-ov 7434 . . 3 (𝑆 substr ⟨𝑋, 𝑋⟩) = ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩)
30 ndmfv 6941 . . 3 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩) = ∅)
3129, 30eqtrid 2789 . 2 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
3228, 31pm2.61i 182 1 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  c0 4333  ifcif 4525  cop 4632  cmpt 5225   × cxp 5683  dom cdm 5685  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  0cc0 11155   + caddc 11158  cmin 11492  cz 12613  ..^cfzo 13694   substr csubstr 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-substr 14679
This theorem is referenced by:  pfx00  14712  swrdccatin1  14763  swrdccat3blem  14777
  Copyright terms: Public domain W3C validator