Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swrd00 | Structured version Visualization version GIF version |
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
swrd00 | ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5624 | . . . 4 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ))) | |
2 | opelxp 5624 | . . . . 5 ⊢ (〈𝑋, 𝑋〉 ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) | |
3 | swrdval 14337 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅)) | |
4 | fzo0 13392 | . . . . . . . . . 10 ⊢ (𝑋..^𝑋) = ∅ | |
5 | 0ss 4335 | . . . . . . . . . 10 ⊢ ∅ ⊆ dom 𝑆 | |
6 | 4, 5 | eqsstri 3959 | . . . . . . . . 9 ⊢ (𝑋..^𝑋) ⊆ dom 𝑆 |
7 | 6 | iftruei 4471 | . . . . . . . 8 ⊢ if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) |
8 | zcn 12307 | . . . . . . . . . . . . . 14 ⊢ (𝑋 ∈ ℤ → 𝑋 ∈ ℂ) | |
9 | 8 | subidd 11303 | . . . . . . . . . . . . 13 ⊢ (𝑋 ∈ ℤ → (𝑋 − 𝑋) = 0) |
10 | 9 | oveq2d 7284 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ ℤ → (0..^(𝑋 − 𝑋)) = (0..^0)) |
11 | 10 | 3ad2ant2 1132 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = (0..^0)) |
12 | fzo0 13392 | . . . . . . . . . . 11 ⊢ (0..^0) = ∅ | |
13 | 11, 12 | eqtrdi 2795 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = ∅) |
14 | 13 | mpteq1d 5173 | . . . . . . . . 9 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋)))) |
15 | mpt0 6571 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅ | |
16 | 14, 15 | eqtrdi 2795 | . . . . . . . 8 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅) |
17 | 7, 16 | eqtrid 2791 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅) |
18 | 3, 17 | eqtrd 2779 | . . . . . 6 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
19 | 18 | 3expb 1118 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
20 | 2, 19 | sylan2b 593 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
21 | 1, 20 | sylbi 216 | . . 3 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
22 | df-substr 14335 | . . . 4 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
23 | ovex 7301 | . . . . . 6 ⊢ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ∈ V | |
24 | 23 | mptex 7093 | . . . . 5 ⊢ (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) ∈ V |
25 | 0ex 5234 | . . . . 5 ⊢ ∅ ∈ V | |
26 | 24, 25 | ifex 4514 | . . . 4 ⊢ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) ∈ V |
27 | 22, 26 | dmmpo 7897 | . . 3 ⊢ dom substr = (V × (ℤ × ℤ)) |
28 | 21, 27 | eleq2s 2858 | . 2 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
29 | df-ov 7271 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) | |
30 | ndmfv 6798 | . . 3 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) = ∅) | |
31 | 29, 30 | eqtrid 2791 | . 2 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
32 | 28, 31 | pm2.61i 182 | 1 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 ∅c0 4261 ifcif 4464 〈cop 4572 ↦ cmpt 5161 × cxp 5586 dom cdm 5588 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 2nd c2nd 7816 0cc0 10855 + caddc 10858 − cmin 11188 ℤcz 12302 ..^cfzo 13364 substr csubstr 14334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-substr 14335 |
This theorem is referenced by: pfx00 14368 swrdccatin1 14419 swrdccat3blem 14433 |
Copyright terms: Public domain | W3C validator |