![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrd00 | Structured version Visualization version GIF version |
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
swrd00 | ⊢ (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5705 | . . . 4 ⊢ (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ))) | |
2 | opelxp 5705 | . . . . 5 ⊢ (⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) | |
3 | swrdval 14597 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅)) | |
4 | fzo0 13659 | . . . . . . . . . 10 ⊢ (𝑋..^𝑋) = ∅ | |
5 | 0ss 4391 | . . . . . . . . . 10 ⊢ ∅ ⊆ dom 𝑆 | |
6 | 4, 5 | eqsstri 4011 | . . . . . . . . 9 ⊢ (𝑋..^𝑋) ⊆ dom 𝑆 |
7 | 6 | iftruei 4530 | . . . . . . . 8 ⊢ if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) |
8 | zcn 12564 | . . . . . . . . . . . . . 14 ⊢ (𝑋 ∈ ℤ → 𝑋 ∈ ℂ) | |
9 | 8 | subidd 11560 | . . . . . . . . . . . . 13 ⊢ (𝑋 ∈ ℤ → (𝑋 − 𝑋) = 0) |
10 | 9 | oveq2d 7420 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ ℤ → (0..^(𝑋 − 𝑋)) = (0..^0)) |
11 | 10 | 3ad2ant2 1131 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = (0..^0)) |
12 | fzo0 13659 | . . . . . . . . . . 11 ⊢ (0..^0) = ∅ | |
13 | 11, 12 | eqtrdi 2782 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = ∅) |
14 | 13 | mpteq1d 5236 | . . . . . . . . 9 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋)))) |
15 | mpt0 6685 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅ | |
16 | 14, 15 | eqtrdi 2782 | . . . . . . . 8 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅) |
17 | 7, 16 | eqtrid 2778 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅) |
18 | 3, 17 | eqtrd 2766 | . . . . . 6 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅) |
19 | 18 | 3expb 1117 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅) |
20 | 2, 19 | sylan2b 593 | . . . 4 ⊢ ((𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅) |
21 | 1, 20 | sylbi 216 | . . 3 ⊢ (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅) |
22 | df-substr 14595 | . . . 4 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
23 | ovex 7437 | . . . . . 6 ⊢ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ∈ V | |
24 | 23 | mptex 7219 | . . . . 5 ⊢ (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) ∈ V |
25 | 0ex 5300 | . . . . 5 ⊢ ∅ ∈ V | |
26 | 24, 25 | ifex 4573 | . . . 4 ⊢ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) ∈ V |
27 | 22, 26 | dmmpo 8053 | . . 3 ⊢ dom substr = (V × (ℤ × ℤ)) |
28 | 21, 27 | eleq2s 2845 | . 2 ⊢ (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅) |
29 | df-ov 7407 | . . 3 ⊢ (𝑆 substr ⟨𝑋, 𝑋⟩) = ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩) | |
30 | ndmfv 6919 | . . 3 ⊢ (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩) = ∅) | |
31 | 29, 30 | eqtrid 2778 | . 2 ⊢ (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅) |
32 | 28, 31 | pm2.61i 182 | 1 ⊢ (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 ifcif 4523 ⟨cop 4629 ↦ cmpt 5224 × cxp 5667 dom cdm 5669 ‘cfv 6536 (class class class)co 7404 1st c1st 7969 2nd c2nd 7970 0cc0 11109 + caddc 11112 − cmin 11445 ℤcz 12559 ..^cfzo 13630 substr csubstr 14594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-substr 14595 |
This theorem is referenced by: pfx00 14628 swrdccatin1 14679 swrdccat3blem 14693 |
Copyright terms: Public domain | W3C validator |