MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd00 Structured version   Visualization version   GIF version

Theorem swrd00 14554
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
swrd00 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅

Proof of Theorem swrd00
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5655 . . . 4 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)))
2 opelxp 5655 . . . . 5 (⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ))
3 swrdval 14553 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅))
4 fzo0 13585 . . . . . . . . . 10 (𝑋..^𝑋) = ∅
5 0ss 4349 . . . . . . . . . 10 ∅ ⊆ dom 𝑆
64, 5eqsstri 3977 . . . . . . . . 9 (𝑋..^𝑋) ⊆ dom 𝑆
76iftruei 4481 . . . . . . . 8 if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋)))
8 zcn 12480 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → 𝑋 ∈ ℂ)
98subidd 11467 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (𝑋𝑋) = 0)
109oveq2d 7368 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (0..^(𝑋𝑋)) = (0..^0))
11103ad2ant2 1134 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = (0..^0))
12 fzo0 13585 . . . . . . . . . . 11 (0..^0) = ∅
1311, 12eqtrdi 2784 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋𝑋)) = ∅)
1413mpteq1d 5183 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))))
15 mpt0 6628 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅
1614, 15eqtrdi 2784 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅)
177, 16eqtrid 2780 . . . . . . 7 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅)
183, 17eqtrd 2768 . . . . . 6 ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
19183expb 1120 . . . . 5 ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
202, 19sylan2b 594 . . . 4 ((𝑆 ∈ V ∧ ⟨𝑋, 𝑋⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
211, 20sylbi 217 . . 3 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ (V × (ℤ × ℤ)) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
22 df-substr 14551 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
23 ovex 7385 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
2423mptex 7163 . . . . 5 (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))) ∈ V
25 0ex 5247 . . . . 5 ∅ ∈ V
2624, 25ifex 4525 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅) ∈ V
2722, 26dmmpo 8009 . . 3 dom substr = (V × (ℤ × ℤ))
2821, 27eleq2s 2851 . 2 (⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
29 df-ov 7355 . . 3 (𝑆 substr ⟨𝑋, 𝑋⟩) = ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩)
30 ndmfv 6860 . . 3 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → ( substr ‘⟨𝑆, ⟨𝑋, 𝑋⟩⟩) = ∅)
3129, 30eqtrid 2780 . 2 (¬ ⟨𝑆, ⟨𝑋, 𝑋⟩⟩ ∈ dom substr → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
3228, 31pm2.61i 182 1 (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  c0 4282  ifcif 4474  cop 4581  cmpt 5174   × cxp 5617  dom cdm 5619  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  0cc0 11013   + caddc 11016  cmin 11351  cz 12475  ..^cfzo 13556   substr csubstr 14550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-substr 14551
This theorem is referenced by:  pfx00  14584  swrdccatin1  14634  swrdccat3blem  14648
  Copyright terms: Public domain W3C validator