Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swrd00 | Structured version Visualization version GIF version |
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
Ref | Expression |
---|---|
swrd00 | ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5563 | . . . 4 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) ↔ (𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ))) | |
2 | opelxp 5563 | . . . . 5 ⊢ (〈𝑋, 𝑋〉 ∈ (ℤ × ℤ) ↔ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) | |
3 | swrdval 14057 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅)) | |
4 | fzo0 13115 | . . . . . . . . . 10 ⊢ (𝑋..^𝑋) = ∅ | |
5 | 0ss 4295 | . . . . . . . . . 10 ⊢ ∅ ⊆ dom 𝑆 | |
6 | 4, 5 | eqsstri 3928 | . . . . . . . . 9 ⊢ (𝑋..^𝑋) ⊆ dom 𝑆 |
7 | 6 | iftruei 4430 | . . . . . . . 8 ⊢ if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) |
8 | zcn 12030 | . . . . . . . . . . . . . 14 ⊢ (𝑋 ∈ ℤ → 𝑋 ∈ ℂ) | |
9 | 8 | subidd 11028 | . . . . . . . . . . . . 13 ⊢ (𝑋 ∈ ℤ → (𝑋 − 𝑋) = 0) |
10 | 9 | oveq2d 7171 | . . . . . . . . . . . 12 ⊢ (𝑋 ∈ ℤ → (0..^(𝑋 − 𝑋)) = (0..^0)) |
11 | 10 | 3ad2ant2 1131 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = (0..^0)) |
12 | fzo0 13115 | . . . . . . . . . . 11 ⊢ (0..^0) = ∅ | |
13 | 11, 12 | eqtrdi 2809 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = ∅) |
14 | 13 | mpteq1d 5124 | . . . . . . . . 9 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋)))) |
15 | mpt0 6477 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅ | |
16 | 14, 15 | eqtrdi 2809 | . . . . . . . 8 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅) |
17 | 7, 16 | syl5eq 2805 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅) |
18 | 3, 17 | eqtrd 2793 | . . . . . 6 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
19 | 18 | 3expb 1117 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ (𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
20 | 2, 19 | sylan2b 596 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 〈𝑋, 𝑋〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
21 | 1, 20 | sylbi 220 | . . 3 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ (V × (ℤ × ℤ)) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
22 | df-substr 14055 | . . . 4 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
23 | ovex 7188 | . . . . . 6 ⊢ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ∈ V | |
24 | 23 | mptex 6982 | . . . . 5 ⊢ (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) ∈ V |
25 | 0ex 5180 | . . . . 5 ⊢ ∅ ∈ V | |
26 | 24, 25 | ifex 4473 | . . . 4 ⊢ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) ∈ V |
27 | 22, 26 | dmmpo 7778 | . . 3 ⊢ dom substr = (V × (ℤ × ℤ)) |
28 | 21, 27 | eleq2s 2870 | . 2 ⊢ (〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
29 | df-ov 7158 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) | |
30 | ndmfv 6692 | . . 3 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → ( substr ‘〈𝑆, 〈𝑋, 𝑋〉〉) = ∅) | |
31 | 29, 30 | syl5eq 2805 | . 2 ⊢ (¬ 〈𝑆, 〈𝑋, 𝑋〉〉 ∈ dom substr → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
32 | 28, 31 | pm2.61i 185 | 1 ⊢ (𝑆 substr 〈𝑋, 𝑋〉) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 ∅c0 4227 ifcif 4423 〈cop 4531 ↦ cmpt 5115 × cxp 5525 dom cdm 5527 ‘cfv 6339 (class class class)co 7155 1st c1st 7696 2nd c2nd 7697 0cc0 10580 + caddc 10583 − cmin 10913 ℤcz 12025 ..^cfzo 13087 substr csubstr 14054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-substr 14055 |
This theorem is referenced by: pfx00 14088 swrdccatin1 14139 swrdccat3blem 14153 |
Copyright terms: Public domain | W3C validator |