![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdnznd | Structured version Visualization version GIF version |
Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6937). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
swrdnznd | ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5718 | . . . 4 ⊢ (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
3 | 2 | adantl 480 | . 2 ⊢ ((𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
4 | df-substr 14631 | . . 3 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
5 | 4 | mpondm0 7667 | . 2 ⊢ (¬ (𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅) |
6 | 3, 5 | nsyl5 159 | 1 ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ⊆ wss 3949 ∅c0 4326 ifcif 4532 ⟨cop 4638 ↦ cmpt 5235 × cxp 5680 dom cdm 5682 ‘cfv 6553 (class class class)co 7426 1st c1st 7997 2nd c2nd 7998 0cc0 11146 + caddc 11149 − cmin 11482 ℤcz 12596 ..^cfzo 13667 substr csubstr 14630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-dm 5692 df-iota 6505 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-substr 14631 |
This theorem is referenced by: swrdnnn0nd 14646 |
Copyright terms: Public domain | W3C validator |