Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swrdnznd | Structured version Visualization version GIF version |
Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6804). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
swrdnznd | ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5625 | . . . 4 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
4 | df-substr 14354 | . . 3 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
5 | 4 | mpondm0 7510 | . 2 ⊢ (¬ (𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
6 | 3, 5 | nsyl5 159 | 1 ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ifcif 4459 〈cop 4567 ↦ cmpt 5157 × cxp 5587 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 0cc0 10871 + caddc 10874 − cmin 11205 ℤcz 12319 ..^cfzo 13382 substr csubstr 14353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-substr 14354 |
This theorem is referenced by: swrdnnn0nd 14369 |
Copyright terms: Public domain | W3C validator |