MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnznd Structured version   Visualization version   GIF version

Theorem swrdnznd 14598
Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6920). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
swrdnznd (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)

Proof of Theorem swrdnznd
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5705 . . . 4 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
21biimpi 215 . . 3 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
32adantl 481 . 2 ((𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
4 df-substr 14597 . . 3 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
54mpondm0 7644 . 2 (¬ (𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
63, 5nsyl5 159 1 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  wss 3943  c0 4317  ifcif 4523  cop 4629  cmpt 5224   × cxp 5667  dom cdm 5669  cfv 6537  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  0cc0 11112   + caddc 11115  cmin 11448  cz 12562  ..^cfzo 13633   substr csubstr 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-dm 5679  df-iota 6489  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-substr 14597
This theorem is referenced by:  swrdnnn0nd  14612
  Copyright terms: Public domain W3C validator