| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdnznd | Structured version Visualization version GIF version | ||
| Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6896). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| swrdnznd | ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5677 | . . . 4 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
| 4 | df-substr 14613 | . . 3 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
| 5 | 4 | mpondm0 7632 | . 2 ⊢ (¬ (𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
| 6 | 3, 5 | nsyl5 159 | 1 ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 ifcif 4491 〈cop 4598 ↦ cmpt 5191 × cxp 5639 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 0cc0 11075 + caddc 11078 − cmin 11412 ℤcz 12536 ..^cfzo 13622 substr csubstr 14612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-substr 14613 |
| This theorem is referenced by: swrdnnn0nd 14628 |
| Copyright terms: Public domain | W3C validator |