![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdnznd | Structured version Visualization version GIF version |
Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6955). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
swrdnznd | ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5736 | . . . 4 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
3 | 2 | adantl 481 | . 2 ⊢ ((𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
4 | df-substr 14689 | . . 3 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
5 | 4 | mpondm0 7690 | . 2 ⊢ (¬ (𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
6 | 3, 5 | nsyl5 159 | 1 ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ifcif 4548 〈cop 4654 ↦ cmpt 5249 × cxp 5698 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 0cc0 11184 + caddc 11187 − cmin 11520 ℤcz 12639 ..^cfzo 13711 substr csubstr 14688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-substr 14689 |
This theorem is referenced by: swrdnnn0nd 14704 |
Copyright terms: Public domain | W3C validator |