| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdnznd | Structured version Visualization version GIF version | ||
| Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6893). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| swrdnznd | ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5674 | . . . 4 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (〈𝐹, 𝐿〉 ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
| 4 | df-substr 14606 | . . 3 ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st ‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) | |
| 5 | 4 | mpondm0 7629 | . 2 ⊢ (¬ (𝑆 ∈ V ∧ 〈𝐹, 𝐿〉 ∈ (ℤ × ℤ)) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
| 6 | 3, 5 | nsyl5 159 | 1 ⊢ (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ifcif 4488 〈cop 4595 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 0cc0 11068 + caddc 11071 − cmin 11405 ℤcz 12529 ..^cfzo 13615 substr csubstr 14605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-substr 14606 |
| This theorem is referenced by: swrdnnn0nd 14621 |
| Copyright terms: Public domain | W3C validator |