MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnznd Structured version   Visualization version   GIF version

Theorem swrdnznd 14006
Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6702). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
swrdnznd (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)

Proof of Theorem swrdnznd
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5593 . . . . 5 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
21biimpi 218 . . . 4 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
32adantl 484 . . 3 ((𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
43con3i 157 . 2 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ¬ (𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)))
5 df-substr 14005 . . 3 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
65mpondm0 7388 . 2 (¬ (𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
74, 6syl 17 1 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  c0 4293  ifcif 4469  cop 4575  cmpt 5148   × cxp 5555  dom cdm 5557  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  0cc0 10539   + caddc 10542  cmin 10872  cz 11984  ..^cfzo 13036   substr csubstr 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-xp 5563  df-dm 5567  df-iota 6316  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-substr 14005
This theorem is referenced by:  swrdnnn0nd  14020
  Copyright terms: Public domain W3C validator