Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrel | Structured version Visualization version GIF version |
Description: Define the symmetric relation predicate. (Read: 𝑅 is a symmetric relation.) For sets, being an element of the class of symmetric relations (df-symrels 36212) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel 36226. Alternate definitions are dfsymrel2 36218 and dfsymrel3 36219. (Contributed by Peter Mazsa, 16-Jul-2021.) |
Ref | Expression |
---|---|
df-symrel | ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | 1 | wsymrel 35898 | . 2 wff SymRel 𝑅 |
3 | 1 | cdm 5525 | . . . . . . 7 class dom 𝑅 |
4 | 1 | crn 5526 | . . . . . . 7 class ran 𝑅 |
5 | 3, 4 | cxp 5523 | . . . . . 6 class (dom 𝑅 × ran 𝑅) |
6 | 1, 5 | cin 3858 | . . . . 5 class (𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
7 | 6 | ccnv 5524 | . . . 4 class ◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
8 | 7, 6 | wss 3859 | . . 3 wff ◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
9 | 1 | wrel 5530 | . . 3 wff Rel 𝑅 |
10 | 8, 9 | wa 400 | . 2 wff (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) |
11 | 2, 10 | wb 209 | 1 wff ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfsymrel2 36218 |
Copyright terms: Public domain | W3C validator |