| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-symrel | Structured version Visualization version GIF version | ||
| Description: Define the symmetric relation predicate. (Read: 𝑅 is a symmetric relation.) For sets, being an element of the class of symmetric relations (df-symrels 38561) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel 38575. Alternate definitions are dfsymrel2 38567 and dfsymrel3 38568. (Contributed by Peter Mazsa, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| df-symrel | ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | wsymrel 38211 | . 2 wff SymRel 𝑅 |
| 3 | 1 | cdm 5654 | . . . . . . 7 class dom 𝑅 |
| 4 | 1 | crn 5655 | . . . . . . 7 class ran 𝑅 |
| 5 | 3, 4 | cxp 5652 | . . . . . 6 class (dom 𝑅 × ran 𝑅) |
| 6 | 1, 5 | cin 3925 | . . . . 5 class (𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
| 7 | 6 | ccnv 5653 | . . . 4 class ◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
| 8 | 7, 6 | wss 3926 | . . 3 wff ◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) |
| 9 | 1 | wrel 5659 | . . 3 wff Rel 𝑅 |
| 10 | 8, 9 | wa 395 | . 2 wff (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅) |
| 11 | 2, 10 | wb 206 | 1 wff ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfsymrel2 38567 |
| Copyright terms: Public domain | W3C validator |