Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsymrelsrel | Structured version Visualization version GIF version |
Description: For sets, being an element of the class of symmetric relations (df-symrels 36761) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
Ref | Expression |
---|---|
elsymrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel 36705 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) |
3 | elsymrels2 36771 | . 2 ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | |
4 | dfsymrel2 36767 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3897 ◡ccnv 5606 Rel wrel 5612 Rels crels 36391 SymRels csymrels 36400 SymRel wsymrel 36401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-xp 5613 df-rel 5614 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-rels 36703 df-ssr 36716 df-syms 36760 df-symrels 36761 df-symrel 36762 |
This theorem is referenced by: elrefsymrelsrel 36789 |
Copyright terms: Public domain | W3C validator |