![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsymrelsrel | Structured version Visualization version GIF version |
Description: For sets, being an element of the class of symmetric relations (df-symrels 37413) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
Ref | Expression |
---|---|
elsymrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel 37357 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
2 | 1 | anbi2d 630 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅))) |
3 | elsymrels2 37423 | . 2 ⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | |
4 | dfsymrel2 37419 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3949 ◡ccnv 5676 Rel wrel 5682 Rels crels 37045 SymRels csymrels 37054 SymRel wsymrel 37055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-rels 37355 df-ssr 37368 df-syms 37412 df-symrels 37413 df-symrel 37414 |
This theorem is referenced by: elrefsymrelsrel 37441 |
Copyright terms: Public domain | W3C validator |